

The Interplay of Energy Policy and Industrial Policy in the Energy Transition

Patrice Geoffron

University Paris-Dauphine, LEDa, CEEM patrice.geoffron@dauphine.fr

Public intervention in the energy transition: A legal and economic perspective on State aid policy

- Observation that a group of dominating energy sources are challenged and then replaced by another group presenting different characteristics
- A particularly significant set of changes to the patterns of energy use in a society:
 - ✓ Changes in sources (e.g: wood to coal)
 - ✓ Changes in society (e.g: rural to urban; affluence)
 - ✓ Changes in environment (deforestation; climate change)
- Path dependence (economic costs, technical constraints, social contracts, ...).

- Transitions have often depended on the timing and influence of broader external landscape forces:
 - ✓ For instance, peak energy prices, as occurred for coal in 1921 and 1926, or for oil in 1973, 1979,
 - ✓ sometimes pushed consumers away from a particular energy source, while scrapping old technology associated with the incumbent source.

• Time-scale:

- ✓ The process from technological innovation to niche market to dominance took a minimum of 40 years
- ✓ An aggregate energy transition, involving the entire economy, could take centuries, as it depended on the switch in fuels and technologies for multiple energy services in many sectors.

• Understanding co-evolutionnary processes:

- ✓ Successful uptake tended to depend on the co-evolution of technologies, industries and institutions
- ✓ that enabled new energy sources to emerge from niches and become core elements in a stable "regime".

Past transitions (1/2)

Past transitions (2/2)

But this time, it's different... (1/3)

But this time, it's different... (2/3)

But this time, it's different... (3/3)

Energy security: a moving landscape (1/2)

Energy security: a moving landscape (2/2)

Facing a Darwinian technological portfolio...

Source: l²₄C

... and the technological "convergence" (1/2)

The 4th Industrial Revolution (4IR) and the Role of Energy

... and the technological "convergence" (2/2)

McKinsey&Company

Low carbon technologies in the globalized competition (1/2)

TOP 5 Solar Panel Manufacturers [Ranked by shipment guidance (GW)]					
1.Sharp	*: 1.Trina Solar				
2.First Solar	*: 2.Yngli Green Energy				
*: 3.Yngli Green Energy	3.Canadian Solar				
4.Kyocera	*: 4.Hanwha SolarOne				
*: 5.Trina Solar	*: 5.Jinko Solar				
2008	2015				

TOP 10 Wind Turbine Manufacturers (Ranked by Global Market Share)								
1.Vestas	6	6.Sulzon	*:	1.Goldwind		6.Enercon		
2.GE	*)	7.Sinovel		2.Vestas	*2	7.Guodian		
3.Gamesa	*1	8.Goldwin		3.GE	*)	8.Ming Yang		
4.Enercon	*1	9.Dongfang		4.Siemens	*2	9.Envision		
5.Siemens		10.Nordex		5.Gamesa	*):	10.CSIC		
2008			20	15				

Low carbon technologies in the globalized competition (2/2)

RESEARCH UNIVERSI

China's share of global cumulative investments (2017-2040)

The effects of China's energy transition are reflected in its high shares of global investment in a range of low-carbon technologies in the New Policies Scenario

Global CO₂ emissions savings from China's low carbon exports

China's exports of low-carbon technologies support worldwide CO₂ emissions savings

The Chinese commitment in the low carbon transition is credible considering the air quality issue

- The European vision:
 - > 20*20*20 in 2020; 80% in 2050
 - > The energy transition as a "socio-economic" project
- But the Paris-Agreement could lead:
 - > To a fierce competition on low carbon technologies
 - With a unique capacity of China to benefit from a "large scale"...
 - ... and a unique capacity of US to deal with the IT-energy convergence.
- In front of that new "paradigm", the European vision is nationally fragmented, with a risk to lose the "momentum"...
- ... the design of the industrial policies and the State aid regime has to be replaced in this context.