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Abstract

We analyse the implications of delegating bids to a bidding agency for the revenues and

efficiency of the Generalised Second-Price auction, the standard sales mechanism for allocating

online ad space. The agency maximises both its own profits and the advertisers’ surplus and

implements collusive agreements by means of side contracts. Our results suggest that an

agency can profitably deliver bid delegation services, which increase the advertisers’ surplus

and contribute to market efficiency. The agency coordinates advertisers on a unique efficient

equilibrium and extracts an optimal fee on the collusive gain that implies a lower bound on the

seller’s revenues. We also find that bid delegation uniquely selects the Vickrey-Clarke-Groves

outcome if side contracts are based on the locally envy-free stability criterion.

Keywords: Generalised second-price auction; Position auction; Bidding ring; Cartel; Bidding

agency; Sponsored Search
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1 Introduction

Billions of simultaneous sponsored search auctions — called Generalised Second-Price (GSP) auc-

tion — are held daily to allocate bundles of online ad spaces by Google, Microsoft and Yahoo!12.

Each time a customer makes a search query, an automated auction is triggered putting advertis-

ers in competition for ad space. This sales mechanism has become the main source of revenue

for search engines and is the most widely used auction ever designed. In 2016, earnings from

advertising represented more than 90% of Google’s revenues in an online advertising market that

in the same year was worth nearly $190 billion3.

The concentration of marketing activities and the novel strategic considerations it represents

for the players engaged in the online ad market have led an increasing number of advertisers to

delegate their search marketing and paid search strategies to third parties — bidding agencies

— that specialise in these activities and which also belong to the ad networks in which they con-

duct their bidding activities. For instance, Gartner’s U.S. Digital Marketing Spending report for

2013 documents that from a pool of 243 firms more than 50% delegate their search marketing

activities4. This means a bidding agency is likely to end up acting on behalf of different adver-

tisers during the same set of keyword auctions, and so it can affect both allocative and revenue

performance of the sales mechanism by coordinating advertisers’ strategies. Thus, in a market,

essentially driven by the Google-Facebook duopoly and which generated around 20% of the global

ad spending in 2016, it is clearly important to understand how rent is allocated among players

and how these trend in delegation affect market efficiency.

Despite its importance and potentially adverse outcomes, advertising intermediation — and

bid delegation — has been overlooked by the main strand of research analysing sponsored search

1The auction works as follows: advertisers announce the maximum price they are willing to pay for each click
on their ad, referred to as their bid for a click, and they pay a price (per click) equal to the bid announced by the
advertiser assigned to the position just below them. In this way, the highest bidder is allocated the ad slot at the
top of the page receiving the highest number of clicks, the second-highest bidder is allocated to the second position
receiving the second-highest number of clicks, and so on.

2A recent exception to this is provided by Facebook, which adopted the Vickrey-Clarke-Groves (VCG) mechanism
in 2015.

3See the eMarketer’s Worldwide Ad Spending report and Google annual report 2016
4Another survey, run in 2013 by Constant Contact, found that in a pool of 1305 small firms nearly 35% outsourced

their bid management activities. See also Decarolis et al. (2017) for a discussion of ad network concentrations.
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auctions, as pioneered by Aggarwal et al. (2006), Varian (2007) and Edelman et al. (2007)5. The

unique quality of ad space is that its value (the expected return on investment) is determined by

consumers search behaviour, which constitutes complex and costly information for firms without

the skills to assess. Against this backdrop, a bidding agency can offer specialised skills and a

service that can internalize advertisers’ search costs. Bid delegation acts as buffer between the

search engine and the advertisers, obstructing rent extraction and raising questions regarding

the way it is shared out between advertisers, the search engine and the agency. At the same time,

by bidding on behalf of different advertisers during the same auction (and on the same keywords),

the agency is at liberty to manipulate its clients final payments by coordinating individual bids,

which in the spirit of classic collusion games relies on distorting the rivalry between advertisers.

In this paper, we undertake a theoretical exploration of the way in which advertiser collu-

sion — by means of bid delegation — jeopardises the revenues and distorts rent allocation of the

GSP auction by considering a bidding agency that seeks to minimise its clients’ rivalry and fi-

nal payments but also to maximise its own profits. We focus on a collusion enhanced by a pre-

communication phase and in the spirit of the mechanism proposed by Graham and Marshall

(1987), we introduce a collusive device to the model developed originally by Varian (2007) and

Edelman et al. (2007), grounded by side payments between advertisers and we limit our attention

to a simultaneous two-position game with three advertisers6. Our results suggest that the agency

can profitably deliver bid delegation services. Its presence in the market increases the advertisers’

surplus and contributes to market efficiency. In short, bid delegation acts as an efficient collusion

constrained by the agency’s participation fee, which limits the adverse effect of a complete cartel

on auction revenues and rent expropriation.

We consider a market organisation that has sevral features in common with menu auction

and common agency games, as analysed by Bernheim and Whinston (1985, 1986a,b), in which

several principals delegate their right to make a decision to a single common agent. Here, the

5Studies in this literature have examined such questions as the optimal design of the auction mechanism (e.g.,
Edelman and Schwartz (2010)), the introduction of consumer search (e.g., Athey and Ellison (2011)), search engine
competition (e.g., Ashlagi et al. (2011)), budget constraints (e.g., Ashlagi et al. (2010)) and more recently, incomplete
information settings (e.g., Gomes and Sweeney (2014)).

6We consider an all-inclusive collusion, in which reducing to the smallest set of advertisers and positions does not
affect the soundness of the model and where the main insights carry can be applied to more positions and players.
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bidding agency is assumed to be risk-neutral, to support no unit cost and to begin the procedure

by making an individual contract proposal that includes a bid profile to be placed on the client’s

behalf, a management fee and the way in which side payments are to be implemented7. The

allocation rule embodied in the contract proposal ensures a monetary payback to each member

and the agency computes this according to each contribution to the collusion. Contributions are

determined as the difference in the prices from which the members benefit when the collusion is

in operation and are assumed to be defined prior to the auction and supported as a sunk cost by

each member. The rules of the GSP do not permit one bid per position, all advertisers seek the top

position and the incentives to defect from a weak agreement are high. This means the standard

collusive strategies encountered in multi-unit second-price auctions do not hold in this context. By

retaining the complete information setting proposed by Varian (2007) and Edelman et al. (2007),

we eliminate the issue of private information extraction encountered in the literature on bidding

rings as the agency has full knowledge of each member’s private valuations8. Hence, incentive

compatibility relies on finding a suitable way to implement collusive agreements that are robust

to ex-post defections (i.e., once a contract has been settled). The collusive structure is based on two

properties: (i) it is grounded on an allocation rule that uniformly divides collusive spoils and (ii)

the agency implements a flat fee-based compensation policy that has to be incentive compatible.

The well-known multiplicity of — asymmetric and symmetric — non-cooperative equilibria

(see Börgers et al. (2013)) makes it difficult to study collusion in the GSP. Collusive bids depend,

by way of individual contributions and members’ outside options, and on non-cooperative outcomes

so that the collusive game also supports multiple collusive equilibria. We find that the agency (i)

coordinates advertisers on a unique collusive equilibrium which entails surpluses that are beyond

the convex hull of Nash equilibrium payoffs (low-price equilibrium) and (ii) extracts an optimal fee

7Various strategies can be adopted. One might include a bid rotation mechanism so that the agency assigns
different advertisers to different keywords and rotates these assignments at each auction. Another might use "split
award" agreements and hold as fixed the set of auctioned keywords for which advertisers compete, or not so that
each keeps its own bundle of keywords. The first of these strategies may be technically costly to implement in a
complex and dynamic environment, while the second raises the issue of which advertiser is more relevant to which
keyword and how such a choice can be justified on economic grounds. We find the strategy of maintaining advertiser
competition for the same set of keywords to be technically the easiest way of achieving efficient coordination and the
most suitable for the specific multi-object environment considered here.

8See, for instance, Graham and Marshall (1987), McAfee and McMillan (1992), Mailath and Zemsky (1991), Mar-
shall and Marx (2007) and Lopomo et al. (2010).
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that secures a minimum revenue for the seller without weakening incentives to collude. Strategic

plays are a function of the commission fee, which acts as a cursor: an increase in the fee drives up

collusive bids (and prices), which converge to the bids that sustain the smallest Nash equilibrium,

at which allocative efficiency can no longer be guaranteed. As a result, a bid delegation organised

by an absolute rent-seeking agency rules out the multiplicity of equilibria and the corresponding

fee implies an upper bound to the seller’s revenue. Therefore, in line with Bulow and Klemperer

(1996), it can be argued that in the short run, the incentives for a seller to break collusion, if it has

a long-term perspective and is focusing its attention on capturing market shares, are mitigated

in that it might be achieved at the expense of allocative efficiency and the advertisers’ surplus.

Finally, a well-known result forwarded by Varian (2007) and Edelman et al. (2007) is that the GSP

auction has a locally envy-free (LEF) equilibrium that is Vickrey-Clarke-Groves (VCG)-equivalent9.

We find that if incentives to defect are consistent with the LEF refinement proposed by Varian

(2007) and Edelman et al. (2007), considered as a stability criterion, the model uniquely selects

the VCG outcome, independently of the fee level. In the model, the agency picks the prices that

maximise bidders’ individual profits in their names. When contemplating some different positions

(and so cheating on the agreements), taking each position price as given, we find that advertisers

do not have sufficient incentives to reduce their expressed demand. Coordination uniquely selects

the VCG outcome and the GSP auction becomes collusion-proof.

To the best of our knowledge, only two studies can be directly related to our work. Both

examine the decentralisation of advertisers’ bidding strategies to a third party in sponsored search

auctions, but in contrast to this paper they consider either different goals or different settings.

Ashlagi et al. (2009) were the first to study a position auction game in which an incentiveless

third-party manages to coordinate the bidding strategies of a pool of advertisers by means of the

solution concept of a mediated equilibrium as first proposed by Monderer and Tennenholtz (2009).

The focus of Ashlagi et al. (2009) was then to study the ability of a third-party to implement the

VCG outcome with incomplete information. Decarolis et al. (2017) also consider bid delegation

9The locally envy-free equilibrium refinement, as proposed by Varian (2007) and Edelman et al. (2007) and on
which the equivalence relies, states that bidders should choose the position that maximises their profits taking prices
as given. In equilibrium, no bidder should find it profitable to swap his position with that of a bidder allocated just
above them.
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to a marketing agency that bids on behalf of different advertisers in the same keyword auction.

In their model, the agency is incentiveless and acts as a social planner whose main goal is to

maximise the advertisers’ surplus.

Here, however, we consider an additional aspect in the formation of agreements between ad-

vertisers and the agency: namely, that relations are contractually based and so involve an exclu-

sivity rule and a commission fee policy. To account for this, we assume that the agency provides a

monetary payback to advertisers so as to align incentives for reaching an agreement. Hence, we

consider a strategic rent-seeking agency, which while also operating on behalf of each advertiser,

uniformly allocates spoils from coordination at the end of the auction. In our model the agency

seeks to maximise both the advertisers’ surplus and its own profits, which raises the question as

to what payment scheme the agency should adopt. In line with common practice in this indus-

try, we suppose the agency extracts a management fee for intermediation10. The model assumes

that the agency implements a common flat-fee on collusive spoils in order to maximise its own

revenue11. We are thus able to account for the effects of the agency’s strategic behaviour on incen-

tives to sustain the collusive agreement and on the seller’s revenue, an explanation that is absent

in Decarolis et al. (2017). We can now derive the bid profiles to be implemented and an analytic

representation of how the seller’s revenue reacts to a the agency’s rent-seeking behaviour.

Since third-parties operate along with outside advertisers, coordinated and non-cooperative

bids interact, which may lead to tractability issues. Decarolis et al. (2017) manage to integrate

this interaction by restricting the behaviour of outside bidders to that of the locally envy-free

refinement of Varian (2007) and Edelman et al. (2007). To avoid these difficulties, we consider

that a monopolistic agency is present on the market and assume an all-inclusive collusion.12 Such

an environment is optimal as the agency only has to control its members’ bids and does not have to

anticipate the bids of potential outside advertisers. We implicitly assume here that if a profitable,
10Thus, an advertiser can be charged each time there is a click on the ad being managed; or the agency can base a

mark-up on the entire amount spent (budget) on the ad; or it can also require a mark-up toward the profits that the
advertiser makes on each purchase. Another interesting but more complex system, is to pay for performance. Here, a
metric is defined ex-ante (in somewhat fuzzy way) and the advertiser only pays once a sale is made or by employing
another metric resulting from the management process.

11The 16th Edition of the Association of National Advertisers’ (ANA) report Trends in Agency Compensation Survey
(2013), documents that over 80% of 98 respondents claimed to uses a fixed-fee compensation policy.

12This assumption is motivated by empirical observations that during the most important keyword auctions, ad-
vertisers are mostly represented by just one agency, see Decarolis et al. (2017) and Decarolis and Rovigatti (2017).
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efficient collusion cannot be implemented under the all-inclusive assumption, we can reasonably

expect it not to be the case if we allow for incomplete cartels.

Finally, there is a recent strand of literature, including studies by Feldman et al. (2010) and

Balseiro and Candogan (2017), that focuses on bid delegation to agencies in the context of multi-

sided ad-exchange platforms, the second main segment of the advertising market. In this market,

advertisers seek to attract the attention of internet users by placing advertisements in an ad space

provided by a publisher on a webpage. Ad-exchanges bring publishers and advertisers together

in the same marketplace in which an ad space is sold using a single-unit Vickrey auction13. In

practice, advertisers belong to a network handled by an agency that buys ad space on their behalf

directly on the exchange platform. In contrast to our model, in addition to the fact that we consider

a multi-unit auction, these studies analyse delegation to an agency that has to select only one bid

from its portfolio of advertisers and does not make side payments.

The rest of this paper is organised as follows: section 2 describes the model, explains the main

issues facing the bidding agency and presents the non-cooperative benchmark. Section 3 presents

the main results and section 4 concludes.

2 A position auction with a bidding agency

We model the GSP auction as a game involving an all-inclusive cartel (or ring) of three bidders in

a set N = {1,2,3} who compete for two positions in a set K= {1,2} sold simultaneously by a search

engine. A third-party, taking the role of what we call the bidding agency, coordinates the collusion.

Each position k has an associated, commonly known, expected click-through rate (henceforth ctr)

denoted by αk ≥ 0 with α1 >α2 >α3 = 0.

Advertisers A player’s valuation expresses his willingness to pay for a click and is denoted by xi,

with xi ∈ [0, x̄]. Let x = {x1, x2, x3} be the set of individual valuations, labelled in decreasing order

so that x1 > x2 > x3. Valuations are understood to be independent of the positions, the identities of

13See McAfee (2011) and Muthukrishnan (2009) for an approach to the practical design of this market.
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the advertisers allocated and of the customers’ clicking behaviour14. Henceforth, i’s value of being

allocated in position 1 or 2 is defined by the product αkxi. Each player simultaneously submits

a single-dimensional and non-negative bid bi ≥ 0 for a click as a function of his valuation. To

distinguish between a non-cooperative (or Nash) bid and a collusive bid we denote the former by

bi and the latter by bN
i . Then, let b= {b1,b2,b3} be the set of bids and b−i the set of bids excluding

bi and let bN = {
bN

1 ,bN
2 ,bN

3
}

be the set of possible actions for cartel members, with bN
−i defined in

a similar fashion. The game consists of allocating positions to bidders based on the order of their

bids (or expressed demand). According to the auction’s rules, when bidder i is assigned a position

k he is charged a price per click pk =αkbk+1. Thus, the net payoff utility function of player i when

assigned position k is equal to πi =αk (xi −bk+1).

Consider that bidders meet before the main auction starts. If they attempt to outbid each other

during this auction they will give most of the surplus to the seller. The task then is to reach an

agreement whereby they can limit surplus extraction and expropriate a significant share of that

surplus from the seller. The goal of the bidding agency is to coordinate matters in such a way that

no bidder finds it profitable to break the settlement by reverting to competitive behaviour. The

goal, therefore, is to draw up individual contracts γ = (
γ1,γ2,γ3

)
so that each potential member

is better off than they would be in the absence of coordination. The contract comprises a bid

recommendation, the side payments that are made and the flat-fee imposed by the agency.

Side payments We assume that the sustainability of the cartel (or ring) is based on the presence

of side payments. This takes the form of a monetary transfer ωk, corresponding to a bidder’s

contribution, from each member to the bidding agency. In return, the bidding agency makes a

lump-sum transfer τ to each member comprising the collusive benefits15.

Remark 1. Individual contributions are based on the final allocation that is anticipated and

incurred as a sunk cost by members.
14We do not consider the question of the allocative externality generated, for instance, by a firm’s reputation among

its customers. A firms of high repute might imply more clicks for a firm of low repute if the former is placed at a
position just above the latter. More experienced customers appear to click more carefully and also more frequently on
ads placed in the median position. The quality of the ad and a firm’s reputation affect their choices. Then valuations
for clicks could be allowed to vary non-linearly between positions.

15This is done at the end of the main auction so that the bidding agency holds the bargaining power and necessarily
controls the incentive compatibility constraints.
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Contributions are computed as the difference between the price bidder i would have to pay to

the seller in the absence of a cartel and the price he actually pays in the presence of the cartel. Let

p̂k be the payment made by member i to the seller when assigned position k in the presence of

collusion. Then, ωk =max {αk (pk − p̂k) ;0}. The expected total gain ΠN from colluding (referred to

as spoils), and which is to be uniformly redistributed at the end of the auction, is the sum of each

member’s payment to the bidding agency, ΠN = ∑
k∈Kωk. At the end of the auction, the bidding

agency exerts a credible monopoly power by setting a fee ε ∈ [0,1] upon ΠN . It may (i) act as a

risk-neutral, incentiveless agent when ε = 0 or (ii) levy a fee 0 < ε < 1 upon collusive profits, or

(iii) keep the entire collusive gain with ε = 1 and so substitute the seller. The quantity ε is set

non-strategically and each member receives a transfer τ equals to:

τ= (1−ε)
3

∑
k∈K

ωk =
1−ε

3

∑
k∈K

αk

(
bk+1 −bN

k+1

)
(1)

We call this quantity a uniform-ε redistribution rule. It is assumed as being retained by the

bidding agency if a defection occurs. Note that τ is independent of i’s own allocation. Given the

redistribution scheme, we denote by pN
i the total payment made by player i to the cartel:

pN
i =


ωk −τ if k = {1,2}

−τ if k = {;}
(2)

that is, bidder i if assigned to position k = {1,2} pays his individual contribution to the cartel and

receives his individual share from the bidding agency in return, whereas if k = {;}, he receives

his individual share but does not contribute16. As a result, member i’s expected gain assigned to

position k equals:

πNi =


αk

(
xi −bN

k+1

)− pN
i if k = {1,2}

−τ if k = {;}

16The environment of complete information simplifies greatly the functioning of such a redistribution rule as there
is no need to implement a pre-knockout in order to make players reveal their private willingness to pay for a click.
There is no adverse selection in this framework and no issue of cartel misrepresentation at the main auction.
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Advertisers 1

Advertiser 2

Advertisers 3

Ad Agency Search Engine

• Slot 1

• Slot 2

pN
1

pN
2

pN
3

µN

Figure 1: Market structure

Agency problem The agency’s profits are given by ΓN = ε
∑

k∈Kωk. It offers individual con-

tracts γi, to which it is committed, composed of a system of recommended non-negative bids

µN = (
bN

i
)

i∈N to be placed during the auction, the share ε ∈ [0,1] it intends to keep and the side-

payments required from each member pN = (
pN

i
)

i∈N . Figure 1 illustrates the market structure

we consider. To illustrate the idea, the timing of the game can be described as follows:

1. Before the auction, the agency makes a contract proposal γi =
(
ε,

{
bN

i , pN
i

})
.

2. In this participation phase, each member either accepts or rejects the proposal. If a member

rejects the proposal then no delegation takes place and each member plays non-cooperatively;

otherwise, bid delegation comes in to operation.

3. Members are then asked to pay their contributions ωi and to refrain from bidding in their

own name at the main auction. At this deviation phase, they can defect from the agreement

and bid some b̃i in order to win a position they could not have won if all were to play non-

cooperatively.

4. The seller then allocates the bidders in decreasing order of their bids and each is charged

p̂k.

5. If no defection occurs during the auction stage, the bidding agency redistributes τ and noth-

ing else.

The agency maximises the advertisers’ total surplus, subject to incentive compatibility, ∀i =
{1,2,3} , ∀bN

i ∈bN and ∀xi ∈X:

πNi

(
bN

i ,bN
−i, xi

)
− π̃i

(
b̃i,bN

−i, xi

)
≥ 0 (3)
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in which π̃i
(
b̃i,bN

−i, xi
)

represents player i’s surplus if he exploits the collusion with a bid

b̃i 6= bN
i while the others play according to the strategy bN . Profits from upward and downward

deviations take the following formulation:

∀l > k : π̃i
(
b̃i, .

) = αl

(
xi −max

{
bN

l+1,0
})

−ωk (4)

∀s < k : π̃i
(
b̃i, .

) = αs

(
xi −max

{
bN

s ,0
})

−ωk (5)

and subject to individual rationality:

πNi

(
bN

i ,bN
−i, xi

)
≥ πi (bi,b−i, xi) (6)

and the restriction that bN
1 ≥ bN

2 ≥ bN
3 .

The incentive compatibility constraint (3) expresses the idea that once bidder i receives his

recommended bid (prior to playing in the auction), he has the choice of either obeying or adjusting

his bid against the bids the bidding agency places on behalf of his competitors17. If a deviation

occurs, the defector does not receive his individual compensation τ but still incurs his contribution

as a sunk cost. This constraint requires that there is no deviating bid b̃ that allocates bidder i any

different position so that he is better off. The last constraint (6) means that player i has to find

it profitable to join the cartel. His profits from accepting contract γi are at least as high as his

outside option, which corresponds to his profits in the Nash game so that each outside option is

assumed to be an equilibrium outcome.

Equilibrium criterion

Definition 1. A collusive mechanism ζ= (
µN ,pN )

is an equilibrium profile if it is (i) individually

rational and (ii) incentive compatible.

In single unit auctions, a collusive device is said to implement an efficient outcome if the

highest-valuing member of the collusion represents the cartel, wins the object and the cartel is

able to suppress internal competition. Such an outcome naturally maximises social welfare as

17Assuming they behave according to the recommendation.
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the good is allocated to the highest-valuing player. We modify this definition slightly to make it

coherent with the GSP auction context.

Definition 2 (First-best outcome). A collusion in the GSP auction is an efficient mechanism if:

(i) the final allocation is such that only the two-highest valuing members are active during the

targeting auction,(ii) it suppresses competition from bidders not allocated to any position, (iii) it

maximises social welfare.

2.1 Benchmark — Non-cooperative outcome

In line with Varian (2007) and Edelman et al. (2007), we first give the set of Nash equilibria in

which bidders do not collude. Renumber players so that xk is the valuation of the bidder assigned

to position k. An equilibrium outcome will be supported by some bid profile b= (b1,b2,b3) if under

it (i) no player can profitably deviate from the position to which he is assigned in equilibrium to

any lower or higher positions; that is, αk (xk − pk) ≥ αl (xk − pl−1) for l < k and that αk (xk − pk) ≥
αs (xk − ps+1) for s > k and pk = αkbk+1; (ii) an assigned player cannot profitably deviate to win

any position; that is, αk (xk − pk)≥ 0 18.

Uncoordinated bids: The following strategy profile b = (b1,b2,b3) characterises all the Nash

equilibria of the static GSP auction with complete information:

b1 ∈
[
max

{
x2 − α2

α1
(x2 −b3) , x3

}
; x̄

]
b2 ∈

[
max {x3 , b3} ; x1 − α2

α1
(x1 −b3)

]
(7)

b3 ∈
[
max

{
0 , x1 − α1

α2
(x1 −b2)

}
; min {x1 , x2}

]

Each player can envision a multiplicity of best-responses to each other’s equilibrium strategy.

Equilibrium bids are bounded above and below by a combination of the lowest bidder’s bid and the

valuations of the player above and below him. Two things are worth noticing about bid profile b.
18Note that the shape of prices is modified as upward deviation occurs, which is not in the spirit of usual competitive

equilibrium analysis. Players can influence the price they pay at the end and these prices are not taken as given.
Each bidder when contemplating an upper position does not expect to pay the same price as that already assigned to
that position.
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First, it does not rule out inefficient and non-assortative allocations. In fact, the only allocation

that is ruled out is that in which the highest-valuing advertiser wins no position and the lowest-

valuing advertisers wins the top position19. Secondly, overbidding could be a candidate for a Nash

equilibrium so that it does not restrict attention to undominated strategies.

VCG outcome: According to Varian (2007) and Edelman et al. (2007), a strategy profile b =
(b1,b2,b3) is a LEF or a symmetric equilibrium if it holds that αkxk − pk ≥ αk−1xk − pk−1 for k =
1,2,3 and with pk =αkbk+1. This criterion implies a shift in the IC conditions so that upward and

downward deviations become symmetric. Even if advertisers were to swap each other’s position,

the price structure would not change. If the bidder in position k decides to undercut the bidder

assigned to a position l < k, he can expect to pay pl = bl+1 and not pl−1 = bl . Thus, under the LEF

stability criterion, each player chooses a position that maximises his payoff taking prices as given

and the process reaches equilibrium prices that then clear the market. In order to implement a

stable competitive equilibrium, bidders need to be locally indifferent. No player has an incentive

to deviate and to bid for the position just above him. The player assigned to position k has to be

locally indifferent between winning position k−1, paying his own bid and position k paying the

next-highest bid. This implies that αkxk−pk =αk−1xk−pk−1, that is pk =αibi+1 =∑3
k=i+1 xk(αk−1−

αk), which gives the following set of bids bv = (
bv

1,bv
2,bv

3
)
:

b1 > bv
2

b2 = x2 − α2

α1

(
x2 −bv

3
)

(8)

b3 = x3

The bid profile bv corresponds to the lowest point in the set of competitive prices among all the

locally envy-free equilibria. Even if truth-telling is not an equilibrium strategy of the GSP auction,

the outcome is strictly equivalent to what a VCG mechanism would have implemented.

19Indeed, if the highest-valuing player was to win no position then it should be the case that b3 ≥ x1 ≥ x3 which
cannot be an equilibrium profile. If the lowest-valuing player was to now win the top position then it should be the
case that p3 = b1 > x3, implying a strict loss for him.

12



Notations: Two equilibria, which we refer to as Lower-Nash Equilibrium (LE) and Upper-Nash

Equilibrium (UE), reside at the boundaries of the Nash set. Each profile is denoted respectively by

bl = (
bl

i

)
i=1,2,3 and bu = (

bu
i

)
i=1,2,3. We call the equilibrium achieved when restricting b3 as being

equal to x3 the Dom-Nash equilibrium denoted by bd = (
bd

i

)
i=1,2,3 and denote the VCG outcome by

bv = (
bv

i

)
i=1,2,3.

From a revenue perspective, any symmetric equilibrium (or locally envy-free equilibrium) in-

duces a revenue at least equal to the VCG revenue (e.g., Feldman et al. (2011), Lucier et al.

(2012)). As a result, if we denote by R l and Ru the auctioneer’s revenues achieved by bl and bu,

respectively we have that R l ≤ Rv ≤ Ru.

3 Equilibrium and revenue

3.1 Collusive equilibria

Consider that the bidding agency acts as a credible banker to which bidders entrust their ex-

pected cash surplus from colluding efficiently. The agency computes individual contributions con-

ditional on the efficient Nash allocation deduced from the set (7). We assume that contributions

are allocation-independent, computed ex ante and, thus, that they are not altered by potential

deviations20. Let θ = α2
α1

∈ [0,1] and η ∈ [0,1] denote, respectively, the ratio of clicks between both

positions and some given threshold value.

Fact 1. The more positions are substitutes the less robust collusive agreements are.

At the benchmark, in order to remain optimal, Nash equilibrium bids are decreasing in the

click ratio θ. If the substitutability between both positions becomes perfect, bidders should bid

less as the need to outbid competitors to win the highest position decreases. However, when

coordination is active, if the substitutability between positions increases, incentive compatibility

constraints become more stringent. The low-valuing player’s profit from cheating and aiming at

second position increases with θ. To see this, recall that the incentive compatibility constraints

20The main concern is the inability of the bidding agency to provide sufficient control over the bidders’ bidding
behaviour and to deter shill bidding and fake aliases, two concerns inherent to online auctions.
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for this member are given by IC3 : τ≥ α1
(
x3 −bN

1
)

and IC
′
3 : τ≥ α2

(
x3 −bN

2
)
. The player’s payoff

from deviating to position one is independent of θ. However, his payoff is strictly increasing in

θ in the case of a deviation to the second position. As a result, the bidding agency is under a

constraint to release the second-highest valuing member in order to keep the incentives aligned

and to maintain the ranking, which in turn makes the internal competition difficult to contain.

Consider contract γi =
(
0,

{
bN

i , pN
i

})
, where the agency is perfectly benevolent. The agency

maximises the advertisers’ surplus and acts as a social planner by not extracting benefits from

the collusive surplus. We can begin by stating that in the absence of commission fees, the agency

implements the most subversive outcome in relation to the seller’s revenue. It coordinates adver-

tisers over the smallest price equilibrium, at which they capture the entire market rent.

Proposition 1. For θ ≥ η, contract γi =
(
0,

{
bN

i , pN
i

})
maximises individual profits and implements

an efficient outcome, whereby all the rent is captured by advertisers.

Proof. The proof follows from that of proposition 2 setting ε= 0.

As in the non-cooperative framework, cartel members can envision multiple best-replies in

response to their respective equilibrium collusive strategies, which makes the study of coordina-

tion difficult. The underlying incentive compatibility constraints allow for symmetric/asymmetric

equilibria (see set 1 in the Appendix). This proposition states that if the degree of substitutability

between positions is sufficiently high, the agency coordinates advertisers in a first-best outcome,

which rules out the multiplicity of collusive equilibria. In equilibrium, the rivalry between bid-

ders is suppressed, thus blocking rent appropriation from the seller. It is fully captured by the

advertisers. Individual payments are minimised and competition from the middle-valuing adver-

tiser is just high enough to secure the second slot and to deter defections from the lowest-valuing

advertiser.

Let us now assume a strategic agency that seeks to maximise its own revenue by charging

advertisers a uniform commission fee, i.e., ε> 0. Consider the optimal contract γ∗i = (
ε,

{
bN

i , pN
i

})
such that bidders are allocated in decreasing order of their valuations with τ maximised given

both the bid profile bg = (
bg

i

)
i=1,2,3 and the fee ε and such that the corresponding profile µ∗

N

defines the smallest efficient collusive equilibrium. The following proposition shows that a whole
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bundle of fees exists so that such a contract can be implemented by a strategic agency, and if the

degree of substitutability between both positions is sufficiently high, the mechanism results in a

constrained low-price outcome.

Proposition 2. γ∗i = (
ε,

{
bN

i , pN
i

})
is an equilibrium contract. The equilibrium bid profile µN =(

bN
i

)
i=1,2,3 is monotonically non-decreasing in ε and decreasing in bg = (

bg
i

)
i=1,2,3 with g = l,v,u.

There exist parameter values (θ,η,δ) ∈ [0,1]3 such that ∀θ ≥ η∧∀ε ≤ δ, a constrained first-best

outcome is achieved and ∀ε> δ internal bidder’s rivalry cannot be constricted.

Proof. See Appendix A.1.

In equilibrium, assigned members’ bids are set equal to a quantity that is strictly below the val-

uation of the non-assigned member, who refrains from bidding. The profile of bids µ∗
N = (

bN
i

)
i=1,2,3

is such that ∀ε≤ δ∧θ ≥ η equilibrium bids are characterised by:

bN
1 = x3 − (1−ε)

3α1

3∑
i=1

αi

(
bi+1 −bN

i+1

)
bN

2 = 1
λ

(
x3 − (1−ε)

3α2

3∑
i=1

αibi+1

)
(9)

bN
3 = 0

with λ = 1
1−(1−ε)α1

α2

, whereas ∀ε ≤ δ∧θ < η the game results in an inefficient allocation such that,

bN
1 ∈ [

bN
2 , x̄

]
and bN

2 = bN
3 = 0, and finally ∀ε > δ inner competition cannot be constricted. Equi-

librium bids jump to the corresponding outside option levels and are defined by relations (13) and

(14) in Appendix A.1.

Fact 2. Collusive bids bN
i negatively depend on the outside option and spoils increase with that

option. As a result, the auction revenue is higher as players are assumed to bid low if playing

non-cooperatively21.

Proposition 2 asserts that the bid delegation to the bidding agency takes the form of an efficient

coordination according to definition 2. The highest-valuing player is allocated first position and
21Consider the social planner situation in which ε = 0 (the relation holds for ε > 0). Denote by RN and R the

auction revenue with and without coordination respectively. The seller’s revenue under collusion drops to RN =
α1

3α2−α1
3α2x3 − α1

3α2−α1
R and decreases with R.
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Figure 2: Collusive equilibrium bidding functions.

the second-valuing player the second, whereas the lowest-valuing player refrains from bidding.

Hence, bid delegation stabilizes the auction outcome to a unique efficient allocation constrained

by the fee level, which adversely affect the auctioneer’s revenues.

Remark 2. The click ratio constraints η and ρ are meaningless when the bidding agency sets ε> δ.

Indeed, the threshold couple
(
η,ρ

)
makes no sense since (i) relations (13) and (14) hold ∀ε ∈ [0,δ].

Thus, the second-valuing member’s bid is strictly positive once ε reaches the value δ and is, thus,

also strictly positive for ε= δ+σ. Then, (ii) ∀ε≤ δ if θ > η his bid is also strictly positive. Finally,

once ε > δ we have that ∂
(
bN2

)
∂ε

≥ 0, which implies that bN
2 > 0 independently of the value of θ and

that bN
3 is also necessarily positive. Therefore the thresholds η and ρ become unbinding ∀ε> δ.

Equilibrium bid functions are illustrated in Figure 2, in which we have set bN
1 = bN

2 + ε since

affects neither payments nor revenues. The bid profile µN = (
bN

2 ,bN
3

)
increases in the fee and

both functions are non-differentiable at threshold δ from which within-competition strictly in-

creases. The lowest-valuing member’s bid becomes strictly positive. The non-differentiability at

threshold δ of the equilibrium bidding functions is a straight implication of two correlated effects.

(i) Once the bidding agency decides to set its fee ε at a higher level, bidding functions conse-

quently increase, which mechanically involves a decrease in the available surplus. In return, (ii)

the bidding agency needs to break the non-assigned member’s incentives to defect, which implies
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an increase in the overall collusive bid functions. To see why, recall that individual payoff utility

function is equal to:

πNi

(
xi;bN

i

)
= αk

(
xi −bN

k+1

)
−

(
αkbk+1 −αkbN

k+1

)
+ 1−ε

3

2∑
j=1

α jb j+1 − 1−ε
3

2∑
j=1

α jbN
j+1

it is thus obvious to see that ∂2πi
∂ε∂bNi

> 0.

Fact 3. The marginal profit loss due to an increase in the fee is compensated by a marginal in-

crease in the coordinated bids, and this compensation is more likely to increase as coordinated bids

increase.

Thus, greed on the part of the bidding agency generate more aggressive behaviour from mem-

bers in order to maintain incentive aligned and to compensate the downward shifting of the col-

lusive gain in terms of individual contributions. These two correlated effects corroborate the

intuitive idea that the monopoly power of the bidding agency has a substantial pervasive effect

upon the durability and sustainability of the collusion.

Therefore, proposition 2 also relates to the sustainability of the non-cooperative outcome in-

sofar as it represents a limit case for any collusive mechanism. We know from relation (7) that

the complexity of the GSP auction implies a multiplicity of Nash equilibria. In our framework,

the agency has the power to push the equilibrium prices upward so that bidders reverse to non-

cooperative behaviour. Consider that the bidding agency endorses the role of an exogenous equi-

librium ”perturbator” (as a mediator in Ashlagi et al. (2009), Monderer and Tennenholtz (2009)),

up to which point can this be done?

Corollary 1. The non-cooperative equilibrium is a sustainable collusive outcome with a uniform-ε

redistribution rule. As ε 7→ 1 the bidding agency coordinates bidders over the lowest Nash equilib-

rium bid profile bl = (
bl

i

)
i=1,2,3.

Proof. The result is immediate if we set ε = 1 into the equilibrium collusive bidding functions

defined in relations (13) and (14). We obtain bN
2 = x3 = bL

2 and bN
3 = x1 − α1

α2
(x1 − x3) = bL

3 . The

objective of the agency is thus now to maximise the function SP = ∑3
i=1 (αi (xi −bi+1)) under the
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same IC constraints of the non-cooperative benchmark. This entails bl as a natural equilibrium

outcome.

The simplest IC collusive mechanism that is always feasible turns out to be the non-cooperative

mechanism in which players set their optimal bids consistent with the Nash equilibrium criterion.

Obviously, collusive payoffs are no lower than in their corresponding non-cooperative counterpart.

However, by incrementally increasing its expropriation abilities, the agency is able to evict all

other equilibria, so that the lowest Nash equilibrium outcome bl = (
bl

i

)
i=1,2,3 becomes the unique

ending point. The intuition of the corollary is as follows. The bidding agency acts on behalf of

each member and if it acts according to proposition 2 no bidder will finds it profitable to leave the

cartel. Then, if ε= 1, it can bid in two different ways. It can pick any bid vector compatible with

the Nash equilibrium criterion so that it implements any Nash outcome without being interested

in the bidders’ individual welfare. Otherwise, it can decide to maximise the latter. By doing so,

it picks the price vector that maximises each individual’s profits, which is bl = (
bl

i

)
i=1,2,3. This

implies that in the limit case, individual payoffs from coordination are equal to the corresponding

equilibrium payoffs with bl .

bN
3

bN
2

µ∗
N

bN
2 = bN

3

Inefficient set

bv

bl

bu

bv
2

x3

x3 bu
2

bu
3

ε1 ε2 = δ

ε3

ε4
IC3

IC1

IR

Figure 3: Set of collusive bids in light grey with ε0 = 0,ε1 = 0.3,ε2 = δ,ε3 = 0.6 and ε4 = 0.9.

Example 1. Let the set of valuations be x = (5,4,3) and the value of both click-through rates be

α = (10,8). Suppose that as an outside option, the bidding agency conjectures that bidders will
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play according to the bid profile bu = (
bu

1 ,bu
2 ,bu

3
)
, defined as the upper bound of each interval of

equilibrium bids in (7). This gives bu
3 = 4,bu

2 = 4.2 and bu
1 = 5 and the corresponding collusive

set is pictured in Figure 3. In Figure 3, we represent equilibrium outcomes for different fee level,

ranging from a pure benevolent agency at ε = 0 to an agency that is an "absolute rent seeker" at

ε= 1. In this environment δ' 0.51 and η= 0.84 so θ < η. When the agency does not seek to extract

rent the equilibrium proposal µ∗
N = (

bN
1 ,bN

2 ,bN
3

)
for ε = 0 is given by bN

3 = 0,bN
2 = 0 and bN

1 > 0.

The mechanism means both players 2 and 3 refrain from bidding, which results in a suboptimal

allocation (with both players being randomly assigned position two). This constitutes the worst

scenario for the seller as the non-cooperative game results in a revenue of Ru = α1b2 +α2b3 =
74, whereas under bid coordination, revenues are RµN = 0. This corresponds to the standard

low-revenue property encountered in multi-object auctions with active collusion. As shown by

the corollary, the collusive outcome converges to bl as ε 7→ 1. At this point, µN = (
bN

1 ,bN
2 ,bN

3
) =(

bN
2 +ε,3,2.5

)
, generating a revenue RµN = 50. Consider that the outside bid profile is set to bl =(

b1 > b2, x3, x1 − α1
α2

(x1 − x3)
)
, then R l =α1b2 +α2b3 = 50 and RµN = 50 if ε= 1.

This last corollary sheds light on the fact that an efficient collusion implemented by a strate-

gic agency cannot result in a full rent expropriation. Greedy behaviour strictly increases within

competition, and as the results in the next subsection show, maximising the commission fee, i.e.,

setting an optimal fee level, secures a minimum level of rent for the seller that mitigates the

adverse effect of bid delegation on the auction revenues.

3.2 The auctioneer and the agency revenue

A profitable coordination can then be achieved even if the bidding agency increases its monopoly

power over the cartel members. The agency still keeps track of the payoff dominance of the col-

lusion over the non-cooperative game and secures allocative efficiency. However, introducing the

ability to extract a positive fee creates a tension between expropriation of surplus, constriction of

bidders’ rivalry and a low-price outcome. A higher fee level increases the agency’s revenue but

drives up equilibrium prices, i.e., advertisers rivalry, and lowers joint profits. Both objectives are

aligned in opposite ways and a rent-seeking behaviour introduces a trade-off that the bidding
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agency has to cope with. We begin by characterising the optimal fee level that solves the tension

between surplus expropriation and the constriction of rivalry.

Lemma 1. An optimal threshold δ is set equal to the point at which the lowest member is indifferent

to being active or staying inactive. It is a non-decreasing function of the Nash bid profile bg =(
bg

i

)
i=1,2,3 with g = l,v,u.

The threshold implies a more stringent condition over individual contributions ωi if the Nash

bids are assumed to be played according to bl . A small increase in the fee makes the low-valuing

member sets bN
3 > 0, which increases within-competition. The IC constraints become binding and

members’ incentives are reversed. As a result, the first-best outcome property can no longer be

maintained if the bidding agency were to become too greedy with respect to the surplus extraction.

This causes the collusion to be broken down from the inside and the low-price property to vanish.

This lemma, together with corollary 1, provides the following result:

Proposition 3. The bidding agency’s revenue is non-monotonic in ε. An optimal incentive-compatible

fee at which an agency maximises its revenue is set equal to the point ε∗ = δ.

Proof. See Appendix A.2.

The profit functions are depicted in Figure 4. Although bidding functions are monotonically

increasing, the bidding agency is able to increase its profits. The increase in fees sufficiently com-

pensates for the increase in collusive prices. As a result, biasing the redistribution of the surplus

becomes a plausible and valuable strategy as it can be achieved without deterring the collusive

incentives. The threshold δ is the critical point at which ε becomes unsustainable and from which

a greedy attitude becomes pervasive. The loss in the bidders’ surplus needs to be compensated

for by an increase in the respective collusive bids, which implies a shift in the bidding agency’s

profits. A rational behaviour that mechanically implies an increase in the internal competition

level, so that collusion can no longer be constrained to an efficient level according to definition 2.

In fact, the latter is, in many ways, a ”common sense” observation as anyone could have ex-

pected this aggressive result. The level of expropriation from the bidding agency makes the in-

centive conditions more stringent for the bidders, preventing them from showing any self-interest
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Figure 4: The bidding agency’s profits as a function of ε

in the cartel formation. Interestingly, such greedy behaviour from the bidding agency does not

lead to antinomy with the auctioneer and may be beneficial to him as µN = (
bN

i
)

i=1,2,3 is strictly

increasing in ε.

Consider now that the auctioneer has the power to affect the click-through rate couple α =
(α1,α2). This is a strong assumption as the αis are the result of the customers’ search strategies.

But let us abstract this feature away and let us suppose that, indeed, the auctioneer was to set

them arbitrarily. We can therefore make the following claim:

Claim 1. An auctioneer cannot use the ratio θ in order to induce levels of revenue higher than those

of the lowest Nash equilibrium.

Proof. See Appendix A.3.

Together with the fact that limε7→1 bN
i = bl

i, proposition 2, which says that the bid profile µN

is decreasing in the bid profile b and proposition 3, which says that it is optimal for the bidding

agency to set ε= δ, we can state the following:

Proposition 4. Greedy behaviour on the part of the agency benefits the auctioneer. The auctioneer’s

revenue is monotonically increasing in ε and the maximum quantity of surplus it can extract is no

higher than in the corresponding non-cooperative equilibrium bid profile bl .
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Figure 5: The auctioneer’s revenue RN and bidders’ surplus BS as a function of ε

An illustrative representation of the auctioneer’s revenue RN (black lines) as a function of ε

against the overall bidders’ surplus BS (grey lines) is given in Figure 5. If ε= 0, the overall surplus

will be entirely divided between members and the auctioneer; nothing is expropriated by it. The

auctioneer obtains the minimum revenue that the presence of the efficient cartel generates and

the members obtain the maximum surplus they can retain from him. In Figure 5 we denote by

BSl the overall surplus achieved under outcome bl , and by R l the auctioneer’s maximum revenue.

Proposition 3 coupled with corollary 1 shows that the agency’s strategic behaviour secures a

lower bound in the seller’s surplus.

Corollary 2. The optimal commission fee mitigates the adverse effect of coordination and secures

a minimum revenue for the seller.

Now, given that the auctioneer cannot artificially or indirectly drive up the collusive bids by

claim 1, and given that it strictly benefits from an increase in the fee, we would naturally assume

that it could be in its best interests to enter into a tacit agreement with the agency. However, it

is not in the interests of the agency to set ε> δ. Therefore, the auctioneer could handle sufficient

compensations so as to make this strategy profitable for the agency. If the bidding agency sets the
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maximum fee (if it intends to act as a sort of non-cooperative equilibrium decentralizer), i.e., ε= 1,

µN converges to bl , so does the auctioneer’s revenue. In order to maintain a sufficient degree of

spoils, members of the cartel need to push the equilibrium prices forward, which is mechanically

beneficial to the seller despite the fact that this surplus now has to be divided between the players,

the seller and the bidding agency.

3.3 Substitutability between positions and competition

Finally, we compare the link between the click ratio θ as a measure of the degree of substitutabil-

ity of positions and the demand-reduction phenomenon observed in the GSP auction and, more

generally, in multi-object auctions. Bid shading occurs in situations in which players’ bids affect

the price they have to pay at the end of the auction which relies on the assumption that bidders

have multi-unit demands. As a result, this should disappear whenever the same player asks for

one object (one position) at the most.

In the GSP auction, advertisers can ask for only one position. Notice the special feature in the

competition nature and equilibrium predictions suggested by the bid profile bv. In equilibrium,

it is optimal for each player to bid strictly below their own valuation (except for the non-assigned

player). In fact, this phenomenon can be extended or broken down with the differentiation in

clicks between positions. This points to the existence of a close link between ctr and the nature of

the competition in the GSP auction.

Remark 3. The relation between the ratio θ = α2
α1

, the equilibrium non-cooperative bids and pay-

ments is summarized in the following observations:

(i) As θ 7→ 0, bid shading disappears. The game converges essentially to a standard second-price

auction.

(ii) As θ 7→ 1, bid shading increases. The game essentially converges to a Bertrand competition.

Take the set of Nash equilibrium bids in (7) and observe that the bids are convex combinations

weighted by the ratio θ. Without loss of generality, let us consider the refinement whereby in the

non-cooperative game the non-assigned bidder (bidder 3) uses a dominant strategy, i.e., b3 = x3.
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We obtain b1 ∈
[
x2 − α2

α1
(x2 − x3) ; x̄

]
, b2 ∈

[
x3 ; x1 − α2

α1
(x1 − x3)

]
and b3 = x3. It is now obvious to

see that when θ = 0, i.e., the first position is the only object worth winning (the most attractive

one), bids are bounded by the next-to-top and the next-to-bottom valuations. That is we obtain

b1 ∈ [x2 ; x̄], b2 ∈ [x3 ; x1] and b3 = x3. The link is even closer at the symmetric equilibrium, where

indeed, bidding one’s valuation is the only possible bid, as it is in standard second-price auctions.

Now, for (ii), note that, as θ = 1, both positions are substitutes and the middle-valuing player’s

equilibrium bid is equal to max {b3, x3}. There is no opportunity for the highest-valuing player

to undercut him and the lowest-valuing advertiser sets the market-clearing price to his private

valuation. We have that b1 ∈ [x3 ; x̄], b2 = x3 and b3 = x3. This situation highlights the analogy with

a Bertrand competition and the well-known demand-reduction phenomenon in standard multi-

object auctions22. The lowest-valuing bidder’s valuation determines the shape of the market-

clearing price. Nevertheless, there is still an opportunity for the auctioneer to make the top

position the only one worth having by destroying incentives to shade in the non-cooperative play.

Coordinated bids: However, there are no clear tendencies for the link between θ and the nature

of the competition with an active cartel.

Remark 4. The relation between the ratio θ = α2
α1

, the equilibrium coordinated bids and payments

is summarized in the following observations:

(i) As θ 7→ 0, bid shading increases. The game essentially converges to a collusive implementation

in a single unit second-price auction.

(ii) As θ 7→ 1, bid shading persists but there is no clear tendency in its magnitude. It depends on

the agency’s objective and on the equilibrium bid profile b fixed as outside option.

If the substitutability between positions was to decrease, that is (α1 −α2) increases, then if

the bidding agency behaves as in proposition 2 and set ε = δ, the coordinate bids of player 2

would equal zero and the link would be reversed. As a result, we would nest the standard result

of collusion in second-price auctions with multi-unit objects and bid shading is exacerbated23.

22See for instance Engelbrecht-Wiggans and Kahn (1998), Ausubel et al. (2014).
23e.g., Graham and Marshall (1987), McAfee and McMillan (1992), Milgrom (2000), Brusco and Lopomo (2002)
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However, if θ = 1, which means that (α1 −α2) increases, we obtain bN
2 = 3x3−(1−ε)(b2+b3)

2+ε and bN
3 = 0,

which depends on the bid profile b. If we assume that the bidding agency seeks to maximise the

bidders surplus, then it coordinates the outside option towards bl =
(
bl

2 = x3,bl
3 = x1 − α1

α2
(x1 − x3)

)
and when ε= δ we get bN

2 = 1
2 x3 and bN

3 = 0.

For ε> δ, then bN
2 = x3 = bN

3 . Thus, if (α1 −α2) increases, then for ε= δ the bid placed by player

2 equals half the valuation of the lowest-valuing bidder, whereas ∀ε > δ bN
2 increases to x3. As

a result, coordinated bids increase in θ and in the degree of substitutability between positions as

highlighted by fact 1.

3.4 Link with the LEF criterion and VCG outcome

In this section we show that, if we scale the analysis over the spirit of standard competitive

equilibrium analysis by using the LEF criterion in the present framework, then a profitable way

to collude does not exist except by achieving the VCG outcome. In other words, if deviations

are managed by members according to the argument of local indifference then the GSP auction

becomes collusion-proof and the equivalence with the Vickrey-Clarke-Groves solution is restored

and unique.

What would the effect be if we were to apply the LEF stability condition to the collusive game,

selecting from the collusive equilibria the one that respects this criterion? In other words, let

us consider the LEF criterion as a stability condition instead of the expression of a Walrasian

tatônnement process (as in Börgers et al. (2013)), the latter being necessarily related to a non-

cooperative analysis. Assume still that, in the case of deviation from the collusive agreement, the

defector pays his individual contribution computed before the targeting auction starts, where indi-

vidual contributions are computed unconditionally on deviations and are based on an assortative

assignment. In addition, assume still that the bidding agency makes its transfer payment after

the main auction. The incentive compatibility conditions are now given by the following relations:

πNk

(
bN

k ,bN
−i, xk

)
− π̃k

(
b̃k,bN

−i, xk

)
≥ 0 (10)
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where ∀k ∈K:

π̃k
(
b̃k, .

) = αk−1

(
xk −bN

k

)
−

(
αkbk+1 −αkbN

k+1

)
(11)

This condition says that when the player assigned to position k intends to defect from the

collusive agreement and contemplates position k− 1, then he expects to pay the same price as

the player assigned to this position. Hence, we give the mechanism a semblance of symmetry in

the collusive equilibrium conditions and this results in each member bidding the non-cooperative

symmetric equilibrium prices.

Proposition 5. Under the locally envy-free condition and a uniform-ε redistribution a cartel with

three players can do no better than achieve the VCG outcome. That is: µ∗
N =

(
bN

1 > bN
2 ;

Pv
1

α1
; x3

)
=bv.

The underlying justification of the choice of the respective non-cooperative bids is as follows.

In the non-cooperative game, if bidders pick, from the set of competitive prices, the one that max-

imises their individual profits, then the LEF criterion results in them implementing the VCG

outcome. In our present context, the bidding agency assumes the role of a mediator that manages

individual choices. Then, if it were to act as a benevolent mediator, under the scope of the compet-

itive equilibrium it would choose the vector of non-cooperative prices that maximises the bidders’

surplus. The purpose of proposition 5 is to show that the bidding agency cannot implement a

compensation policy that is compatible with a first-best collusive outcome under this stability cri-

terion. It is interesting to note that bidding functions are now completely independent of the

agency’s compensation policy. Hence, the key idea of this proposition is that the GSP auction,

together with an efficient collusion, implements, in equilibrium, the VCG-equivalent outcome as

a result of explicit coordination. Sponsored search markets entail a tri-partite structure in which

third parties bid on behalf of different advertisers. As a result, our model offers a consistent

justification as to why bidders behave according to the LEF refinement when bid delegation is

involved.
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4 Concluding remarks

Bidding agencies have emerged to help advertisers internalize their costs of knowledge acquisition

and to absorb the level of competition they themselves would create by acting non-cooperatively.

To the best of our knowledge, this study is the first to offer a specific examination of an explicit

bid coordination implemented by a bidding agency at a GSP auction.

Specifically, the paper proposes a characterisation of the bid profiles that can be implemented

in a two-position game involving three players. This characterisation was subsequently increased

to include five members and four positions , but it appears a closed-form solution cannot be com-

puted for a higher number of players. Numerical simulations suggest that the same intuition

prevails, which is why we opted to focus solely on the case of three advertisers and two positions.

Bidders can efficiently collude via the bidding agency, but this adversely affects GSP auction

revenues. This study also proposes a closed-form expression for the optimum fee level that can

be implemented and highlights the non-monotonicity of the agency’s revenues. It is argued that

greedy behaviour on the part of the bidding agency is detrimental to the sustainability of an

efficient collusion but that it manages to coordinate advertisers at the least efficient Nash equilib-

rium. Our results suggest that an agency can deliver a profitable bid delegation service, and that

its presence in the sponsored search market increases the advertisers’ surplus and contributes to

market efficiency. We believe that our model offers a stylized justification of both the prevalence of

the tri-partite market structure and of the compensation policies based on a fixed fee that prevail

in this market.

The auctioneer is passive, which raises the question as to what it should do and if it it is in

its interests to prevent collusion in the auction. We argue that it may not be in the auctioneer’s

interests to deter collusion if it takes a long-run perspective. A search engine’s revenues are

based on maintaining a strong market position, which is derived from advertisers’ feelings that

they are obtaining a high surplus. A one-shot auction might be greatly impaired by delegation

but, in the long run, in line with the reasoning of Bulow and Klemperer (1996) and Roughgarden

and Sundararajan (2007), the auction should generate near-optimal revenues. Thus, from our

perspective it should be in the interests of the auctioneer to maintain this structure and even
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cooperate with bidding agencies as shown by corollary 1 and proposition 4. Finally, the non-

cooperative VCG solution is uniquely determined through the process of explicit coordination,

which offers an intuitive and consistent justification when implemented non-cooperatively. We

conclude by commenting on the assumptions made in our analysis and look at possible extensions

of our work.

Our analysis rests on four main assumptions. First, we do not consider the possibility of re-

peated interactions, as we deal solely with the one-shot GSP auction game. Second, the agency

occupies a monopoly position and does not have to face an adverse selection issue when imple-

menting the collusive device. Third, once a potential member rejects the proposed contract then

the cartel is not formed. Finally, individual contributions and the lump-sum transfer are com-

puted and redistributed uniformly among members and are independent of individual deviations.

In practice, the GSP auction is automatically triggered each time a search query is entered by a

consumer, and this may favour tacit collusion as bidders have opportunities to compete against the

same set of competitors. Our intuition is that the outcome will remain the same as the bidding

agency can implement the additional threat of triggering non-cooperative bidding once a defec-

tion occurs. An interesting consideration here is the possibility of implementing a bid-rotation

mechanism as in McAfee and McMillan (1992).

Multiple bidding agencies and incentives for the seller. Even if multiple agencies bidding in the

name of different advertisers during the same set of keyword auctions appears rarely, an extension

would be to integrate a competitive stage that includes different third parties and assess the effect

of competition for the auction performance. This would introduce additional strategic scope and

might act in favour of an increase in the level of competition with respect to our results. For

instance, what would the outcome be of introducing an oligopoly of agencies that compete à la

Bertrand by offering the lowest compatible fee?

Identity-dependent and deviation-dependent side payments. The uniform fee and uniform re-

distribution of spoils assumptions seem to be good approximations of agency practices. They levy

a fee, set ex-ante, on the revenues generated by each click to each advertisers. We believe that

our model, therefore, makes sense in relation to the equal redistribution assumption. Indeed, the
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model involves taxation on the collusive spoils that does not take into account individual members’

identity and importance. As a result, further extensions should consider the case in which the flat-

fee becomes part of the individual contract, as a function of the member’s importance within the

cartel. For instance, considering redistribution as a function of each firm’s market power in the

product market would be a suitable task to pursue.

A Appendix

A.1 Proof of proposition 2

We seek to construct a collusive equilibrium bid profile that is compatible with the incentive com-

patibility constraints defined in (4) and (5) and with the individual rationality constraint defined

by the relation (6). We set θ = α2
α1

.

From player 2’s incentive compatibility constraint, we know he will not deviate to position 1 if

the following relation is satisfied α2
(
x2 −bN

3
)−ω2+ 1−ε

3 ΠN ≥α1
(
x2 −bN

1
)−ω2. This relation gives

the following conditions:

bN
3 ≤ 1

(4−ε)α2

(
(1−ε)

2∑
i=1

pi − (1−ε)α1bN
2 +3α1bN

1 − (α1 −α2)3x1

)

bN
1 ≥ 1

3α1

(
(α1 −α2)3x2 − (1−ε)

2∑
i=1

pi − (1−ε)α1bN
2 + (4−ε)α2bN

3

)

giving the first lower bound for player 1 and an upper bound for player 3. Now from player

1’s incentive compatibility constraint, we know that if he does not want to swap his position for

position 2, then it should be the case that α1
(
x1 −bN

2
)−ω1+ 1−ε

3 ΠN ≥α2
(
x1 −bN

3
)−ω1. This gives

the following relations:

bN
2 ≤ 1

(4−ε)α1

(
(α1 −α2)3x1 +

2∑
i=1

pi + (2+ε)α2bN
3

)

bN
3 ≥ 1

(2+ε)α2

(
(4−ε)α1bN

2 −
2∑

i=1
pi − (α1 −α2)3x1

)

the first upper bound for player 2 and the lower bound for player 3. Finally, if we examine player
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3’s incentive compatibility constraint, we obtain 1−ε
3 ΠN ≥ α1

(
x3 −bN

1
)

and 1−ε
3 ΠN ≥ α2

(
x3 −bN

2
)
,

giving respectively:

bN
1 ≥ x3 − 1

3α1

(
(1−ε)

2∑
i=1

wi

)

bN
2 ≥ 1

3α2 − (1−ε)α1

(
3α2x3 − (1−ε)

2∑
i=1

pi + (1−ε)α2bN
3

)

the second lower bounds for player 1 and 2. The participation constraint equals
∑2

i=1 pi ≥∑2
i=1αibN

i+1,

which implies bN
2 ≤ b2 and bN

3 ≤ b3. The above inequalities result in the following equilibrium

strategy profile µN = (
bN

i
)

i=1,2,3:

Set of collusive bids 1.

bN
1 ∈ [A; x̄]

bN
2 ∈ [B; C] (12)

bN
3 ∈

[
max

{
0;

1
(2+ε)α2

(
(4−ε)α1bN

2 − (1−ε)
2∑

i=1
pi − (α1 −α2)3x1

)}
; D

]

with

A=max

{
x3 − (1−ε)

3α1

2∑
i=1

wi ;
1

3α1

(
(α1 −α2)3x2 − (1−ε)

2∑
i=1

pi − (1−ε)α1bN
2 + (4−ε)α2bN

3

)}

B =max

{
0;

1
3α2 − (1−ε)α1

(
3α2x3 − (1−ε)

2∑
i=1

pi + (1−ε)α2bN
3

)}

C = 1
(4−ε)α1

(
(α1 −α2)3x1 +

2∑
i=1

pi + (2+ε)α2bN
3

)

D = 1
(4−ε)α2

(
(1−ε)

2∑
i=1

pi − (1−ε)α1bN
2 +3α1bN

1 − (α1 −α2)3x1

)

We use the following claim which gives us a tool with which to discriminate among the set of

compatible collusive bids:

Claim 2. A sufficient condition for bN
2 > 0 is θ = α2

α1
≥ (1−ε)b2

3x3−(1−ε)b3
.

Proof. Set bN
1 so that neither player 2 nor player 3 has incentives to deviate to the top position.
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The incentive compatibility conditions are:

(1−ε) (α1b2 +α2b3)−3α2x3 − (1−ε)α2bN
3 + (3α2 − (1−ε)α1)bN

2 ≥ 0 IC3

3α2x2 + (1−ε) (α1b2 +α2b3)− (4−ε)α2bN
3 + (1−ε)α1bN

2 ≥ 0 IC2

3α1x1 + (1−ε) (α1b2 +α2b3)− (1−ε)α2bN
3 + (4−ε)α1bN

2 ≥ 0 IC1

(α1 −α2)3x1 + (1−ε) (α1b2 +α2b3)+ (2+ε)α2bN
3 − (4−ε)α1bN

2 ≥ 0 IC
′
1

where IC3 is player 3’s incentives to deviate for position 2, IC2 is the player 2’s incentives to oc-

cupy no position, IC1 is player 1’s incentives to occupy no position and IC
′
1 is player 1’s incentives

to occupy position 2. It can be observed that IC3 implies both IC2 and IC1. Now, assume that

bN
2 = bN

3 = 0, we have:

(1−ε) (α1b2 +α2b3)−3α2x3 ≥ 0 IC3

(α1 −α2)3x1 + (1−ε) (α1b2 +α2b3)≥ 0 IC
′
1

Thus, these bids are compatible if the following is true: (1−ε) (b2 +θb3)−3θx3 ≥ 0 and (1−θ)3x1+
(1−ε) (b2 +θb3) ≥ 0: that is, if θ ≤ (1−ε)b2

3x3−(1−ε)b3
= η or if θ ≤ 3x1+(1−ε)b2

3x3−(1−ε)b3
, where the first inequality im-

plies the second. Thus, bN
2 = bN

3 = 0 are compatible bids if θ ≤ η.

Since, bN
1 deters any deviation for the top position, it suffices to consider the adjacent devi-

ations. Then, according to the claim, to ensure an efficient assignment we impose θ > η so that

bN
2 > 0 and maintain the bid bN

3 = 0. Both constraints are,

(1−ε)
2∑

i=1
αibi+1 −3α2x3 + (3α2 − (1−ε)α1)bN

2 ≥ 0 IC3

(α1 −α2)3x1 + (1−ε)
2∑

i=1
αibi+1 − (4−ε)α1bN

2 ≥ 0 IC
′
1

as x3 < x1 if player 3’s incentive to occupy position 2 is binding, it should also be the case for player

1. Thus, we are left with the constraint IC3 in equilibrium which implies that (1−ε)∑2
i=1αibi+1−
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3α2x3 + (3α2 − (1−ε)α1)bN
2 = 0. That is,

bN
2 = 1

3α2 − (1−ε)α1

(
3α2x3 − (1−ε)

2∑
i=1

αibi+1

)

Notice that, bN
2 < x3 since we can re-write the last expression as,

bN
2 = 1

3α2 − (1−ε)α1

(
3α2x3 − (1−ε)

2∑
i=1

αibi+1

)

= x3 −
(

(1−ε)
(1−ε)α1 −3α2

(α1 (x3 −b2)−α2b3)
)

= x3 −λ (α2x3 −α2b3 −α2x3 +α1x3 −α1b2)

= x3 −λ (π3 + (α1 −α2) x3 −α1b2)

and that IC
′
1 is satisfied with such bid,

(α1 −α2)3x1 + (1−ε)
2∑

i=1
αibi+1 − (4−ε)α1bN

2

≥ (α1 −α2)3x1 + (1−ε)
2∑

i=1
αibi+1 − (4−ε)α1x3

≥ (α1 −α2)3x3 + (1−ε)
2∑

i=1
αibi+1 − (4−ε)α1x3

≥ (1−ε)
2∑

i=1
αibi+1 − (3α2 − (1−ε)α1) x3 ≥ 0

Now, consider the case in which bN
2 > 0 and bN

3 > 0. This is only possible towards the parameter

ε. Assume that there exists a threshold δ so that if ε> δ then bN
2 > 0 and bN

3 > 0. Both constraints

equal,

(1−ε)
2∑

i=1
αibi+1 −3α2x3 − (1−ε)α2bN

3 + (3α2 − (1−ε)α1)bN
2 ≥ 0 IC3

(α1 −α2)3x1 + (1−ε)
2∑

i=1
αibi+1 + (2+ε)α2bN

3 − (4−ε)α1bN
2 ≥ 0 IC

′
1

Both constraints are binding at the optimum, otherwise the bidding agency can decrease bN
2
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and bN
3 accordingly. We obtain,

bN
2 = 1

3α2 − (1−ε)α1

(
3α2x3 − (1−ε)

2∑
i=1

αibi+1 + (1−ε)α2bN
3

)

bN
3 = 1

(2+ε)α2

(
(4−ε)α1bN

2 − (1−ε)
2∑

i=1
pi − (α1 −α2)3x1

)

Plugging the expression of bN
2 in that of bN

3 results in the following relation,

bN
3 =

(
x1 (α1 −α2) ((1−ε)α1 −3α2)− (1−ε) (α1 +α2)

∑2
i=1αibi+1 + (4−ε)α1α2x3

)
α2 ((2+ε)α2 − (1−ε)2α1)

(13)

which we replace in the expression of bN
2 to obtain,

bN
2 =

(
(2+ε)α2x3 − (1−ε)∑2

i=1αibi+1 − (1−ε) (α1 −α2) x1
)

(2+ε)α2 − (1−ε)2α1
(14)

Proof of the monotonicity and the decrease in b is straightforward. Denote by bN
i and b̄N

i

the respective collusive bids for ε ≤ δ and ε > δ. ∀ε ≤ δ the derivative of bN
2 with respect to ε

is given by
∂
(
bN2

)
∂ε

= 3α2(α1b2+α2b3−α1x3)
(3α2−(1−ε)α1)2

≥ 0 and the derivative with respect to R = (α1b2 +α2b3) by
∂
(
bN2

)
∂R =− 1−ε

3α2−α1(1−ε) which is negative if 3α2 −α1 (1−ε) ≥ 0 that is if α2
α1

≥ 1−ε
3 which is satisfied by

the restriction that bN
2 > 0. Now, ∀ε> δ the derivatives are given by:

∂
(
b̄N

2
)

∂ε
= 3α2 (α1b2 +α2b3 + (α1 −α2) x1 −2α1x3)

(α2 (2+ε)−2α1 (1−ε))2 ≥ 0

∂
(
b̄N

3
)

∂ε
= 3(α1 +α2) (α1b2 +α2b3 + (α1 −α2) x1 −2α1x3)

(α2 (2+ε)−2α1 (1−ε))2 ≥ 0

∂
(
b̄N

2
)

∂R
= − (1−ε)

(2+ε)α2 − (1−ε)2α1
≤ 0

∂
(
b̄N

3
)

∂R
= − (1−ε) (α1 +α2)
α2 ((2+ε)α2 − (1−ε)2α1)

≤ 0

in which the last two denominators present positive signs if θ ≥ 2 (2+ε)
(1−ε) .
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A.2 Proof of proposition 3

To find the value of the threshold δ simply find the value of ε that solves,

(
(2+ε)α2x3 − (1−ε)∑2

i=1αibi+1 − (1−ε) (α1 −α2) x1
)

(2+ε)α2 − (1−ε)2α1
−

(
3α2x3 − (1−ε)∑2

i=1αibi+1
)

3α2 − (1−ε)α1
= 0

and(
x1 (α1 −α2) ((1−ε)α1 −3α2)− (1−ε) (α1 +α2)

∑2
i=1αibi+1 + (4−ε)α1α2x3

)
α2 ((2+ε)α2 − (1−ε)2α1)

= 0

this gives,

ε∗ = δ=
(
1+ α2

α1

)∑2
i=1αibi+1 −

(
1− α2

α1

)
(α1 −3α2) x1 −4α2x3(

1+ α2
α1

)∑2
i=1αibi+1 −

(
1− α2

α1

)
α1x1 −α2x3

∀ε ∈ [0,δ∗] the equilibrium strategy profile is characterised by the sets (9). Thus the bidding

agency’s profit is equal to the following quantity:

Γ
′
N = ε

{
α1

(
b2 −bN

2

)
+α2

(
b3 −bN

3

)}
= ε

{
R−α1

(
3α2x3 − (1−ε) (α1b2 +α2b3)

3α2 − (1−ε)α1

)}

and ∀ε ∈ (δ∗,1), by the equilibrium bids (13) and (14), it takes the following quantity:

Γ
′′
N = ε

{
R−α1

(
(2+ε)α2x3 − (1−ε) (α1b2 +α2b3)− (1−ε) (α1 −α2) x1

(2+ε)α2 − (1−ε)2α1

)
−α2

(
x1 (α1 −α2) ((1−ε)α1 −3α2)− (1−ε) (α1 +α2) (α1b2 +α2b3)+ (4−ε)α1α2x3

α2 ((2+ε)α2 − (1−ε)2α1)

)}

The first and second derivative of Γ
′
N are respectively equal to:

∂

∂ε

(
Γ

′
N

)
= 3α2 (3α2 −α1)

(α1b2 +α2b3 −α1x3)
(3α2 − (1−ε)α1)2

which is positive if 3α2 ≥α1 and

∂2

∂ε2

(
Γ

′
N

)
=−6α1α2 (3α2 −α1)

(α1b2 +α2b3 −α1x3)
(3α2 − (1−ε)α1)3

which presents a negative sign whenever 3α2 ≥α1. Thus, in the domain [0,δ∗) the bidding agency’s
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profit function is concave. The function is non-differentiable in ε = δ∗ and the first and second

derivatives of Γ
′′
N are, respectively, given by:

∂

∂ε

(
Γ

′′
N

)
=−6α2 (α1 −α2)

(α1b2 +α2b3 + x1 (α1 −α2)−2α1x3)
((2+ε)α2 − (1−ε)2α1)2

which presents a negative sign and

∂2

∂ε2

(
Γ

′′
N

)
= 12α2 (α1 −α2) (2α1 +α2)

(α1b2 +α2b3 + x1 (α1 −α2)−2α1x3)
((2+ε)α2 − (1−ε)2α1)2

which presents a positive sign. Thus, the profit function is a convex function over the domain

(δ∗,1) .

A.3 Proof of claim 1

From proposition 3, we know that the bidding agency has no incentives to set ε> δ; thus, it is suffi-

cient to focus on the bid functions of relation (9). Take the equilibrium bid profile µN of proposition

2 and rearrange the expressions so that the bids become a function of θ. From proposition 3, we

know that the agency has no incentives to set ε> δ; thus, it is sufficient to focus on the bid func-

tions of relation (9). Consider the situation in which α1 7→∞ so that θ = 0, from claim 2 we have

that bN
2 = bN

3 = 0. Hence, the auctioneer’s revenues would fall to zero. If now the auctioneer sets

α1 = α2 so that θ = 1, rearrange relation (9) to obtain bN
2 (θ) = 3θx3−(1−ε)(b2+θb3)

3θ−(1−ε) . From proposition

3 it is optimal for the bidding agency to set ε= δ; thus, we obtain bN
2 = α2x3+α2(b2−b3)−2α1b2

2α2(x3−α1b2+α2b3) , which

equals 1
2 x3 if the outside bid profile is assumed to be bl =

(
bl

2 = x3,bl
3 = x1 − α1

α2
(x1 − x3)

)
and x3 if

bl = (
bl

2 = x3,bl
3 = 0

)
is considered. As a result, the auctioneer’s revenue cannot be higher than in

the corresponding equilibrium profile bl .
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A.4 Proof of proposition 5

In order for player 2 to be indifferent to winning the second position at price bN
3 or winning top

position at price bN
2 , the following relation should be satisfied:

α2

(
x2 −bN

3

)
−ω2 + 1−ε

3
ΠN =α1

(
x2 −bN

2

)
−ω2

For player three to be indifferent to being assigned to the second position or not being assigned

at all under the collusive agreement it should be that 1−ε
3 ΠN = α2

(
x3 −bN

3
)
. Rearranging both

relations, we obtain the following pair of equations:

α1bN
2 = 3

2+ε (x2 (α1 −α2))+ 4−ε
2+εα2bN

3 − 1−ε
2+ε

(
2∑

i=1
Pv

i

)
(15)

α2bN
3 = 3

2+εα2x3 + 1−ε
2+ε

(
α1bN

2 −
2∑

i=1
Pv

i

)
(16)

Recall that Pv
i = ∑m+1

k=i+1 xk(αk−1 −αk). Rearranging terms, plugging (16) into (15) and using

equation (8), we obtain α1bN
2 = x2 (α1 −α2)+α2x3 = Pv

1 and α2bN
3 = α2x3 = Pv

2 . The solution cor-

responds for any ε ∈ [0,1] to the same equilibrium bids and payments of the VCG-equivalent

equilibrium bids profile of equation (8) and thus results in the same outcome as the symmetric

non-cooperative equilibrium.

B Experimentations

We run 1000 instance of the one-shot GSP game, using the General Algebraic Modeling System

(GAMS), in which, following Cary et al. (2008), each valuation is drawn from a distribution G(x)∼
N (500,200) setting the value of X1, X2 and X3 respectively to x1 = 592.7, x2 = 565.535 and x3 =
437.331. On average, we observe a ctr of 0.23% on higher positions which allows us to reasonably

set λ= 0.23 giving E(α)= 4.3 (Synodiance 2013 synodiance.ctr.study2013) thus H (α)∼ E(0.23). The

exponential law generates numbers lying between 0 and 1 which can be directly interpreted as

click probability or click rates. For each instance, we computed the collusive bids resulting from
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Figure 6: Equilibrium collusive bids when ε = 0 against θ respectively with outside bid profile
bl ,bv,bu when H(α)∼ E(0,23).

the agency’s maximisation problem for each ε ∈ [0,1]. The outside option πi (bi,b−i, xi) is ex-ante

determined according to bl ,dd,bv,bu. The bid vector bl involves each bidder playing at the lower

bound of equation (7), bd is simply bl with the restriction that bidder 3 plays truthfully, bv are

the bids sustaining the VCG-equivalent outcome defined by the bid vector in equation (8) and bu

corresponds to the upper bound of equation (7).

B.1 Bids, profits and revenues

Figure 6 depicts the positive relation existing between the ratio of clicks, we denoted by θ, when

ε= 0 and the cooperative bids of players 1 and 2. In such a situation, the rivalry from the lowest

advertiser is muted and the collusive outcome is maximised. This figure shows the underlying

idea of proposition 2 that the degree of difference in clicks between both positions has to be low

enough to induce an efficient allocation. That is, to avoid a random assignment between the

lowest-valuing member and the second-highest valuing one.

Figure 7 expresses the underlying idea of corollary 1. That is, all individual surpluses are

lower-bounded by the individual surpluses produced in the game sustained by the corresponding

non-cooperative price vector. We represented the average difference between collusive surpluses

when contributions are computed according to each outside option price, i.e., pg
k = bg

k+1 with g =
l,d,v,u, and: (i) the non-cooperative surplus produced by bid vector bl and (ii) the surplus that
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individuals would have in each corresponding non-cooperative equilibrium. Let ψ(.) be the average

difference for each case. We computed ψ(i) = πk
(
pl

k

)−πNk (
pg

k

)
and ψ(ii) = πk

(
pg

k

)−πNk (
pg

k

)
. We

can observe that ψ(ii) 7→ 0 as ε 7→ 1− which makes sense as both individual contributions tend to

zero and each individual rationality constraint is binding as the collusive bids increase with ε.

Although for high enough values of ε, the bid profile computes according to the outside option bl

strictly dominates all other collusive profiles from the bidders’ viewpoint. Note the disruption at

ε= 1. Joint profits jump to the joint surplus achieved by bl (Figures 7a and 7c).

Figure 8 depicts the idea of proposition 4 that the revenue of the seller is upper-bounded by the

revenue produced under price vector bl . If the collusive mechanism is computed according to the

outside option bl , bd, bv or bu, we can observe in Figure 8d, that as ε 7→ 1 collusive prices converge

to the level sustaining the non-cooperative outcome bl . As a result, revenues for the seller also

converge to the same revenue level (around 3372) as shown in Figure 8c.

B.2 Comparison between the benchmark and the collusive outcome and

thresholds for ε

Table 1 describes the collusive outcome implemented by a bidding agency that acts as a benevo-

lent agent, i.e. ε = 0 and the non-cooperative outcome corresponding to each Nash extremum we

consider. Conversely, Tables 3 and 4 describe the solution implemented by the mechanism when

the agency imposes a flat-fee ε > 0 on collusive gains and the corresponding non-cooperative out-

comes, again for each Nash extremum. We represent each individual profit, contribution, seller’s

revenue, joint profit (cartel surplus) and individual bid.

Description of the non-cooperative equilibria and of the collusive mechanism with a

benevolent bidding agency from Table 1: If each player behaves according to the lower

bound of relations (7), i.e., bl , then equilibrium bids involve bid shading from each player with

respect to their valuations (b1 = 453.53< 592,b2 = 437.3< 565.5 and b3 = 170.1< 437.3), the final

allocation is efficient as player 1 obtains the first position and player 2 the second (however it

is not locally-envy free) and produces a total revenue of Ru = 3450.8 for the seller. Notice that
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Benevolent agency

Non-Cooperative Play Cartel

bl bd bv bu Mean bl bd bv bu Mean

Surplus
Player 1 1024.32 1024.32 466.81 60.98 644.11 2039.84 2231.1341878.8521756.32 1976.53
Player 2 700.97 287.65 287.65 0 319.06 1716 1494.49 1699.67 1695.34 1651.52
Player 3 . . . . . 1015.54 1206.84 1412.02 1695.34 1332.43

Contributions
Player 1 . . . . . 2478.76 2639.27 3254.81 3817.13 3047.5
Player 2 . . . . . 567.86 981.24 981.24 1268.9 949.8
Player 3 . . . . . 0 0 0 0

Average Contributions . . . . . 1015.5421206.84 1412.02 1332.43

Seller Revenue 3450.82 3864.2 4421.7 5115.17 4212.9 404.2 243.7 185.64 29.15 215.67

Total Surplus 5176.15 5176.15 5176.15 5176.15 5176.15 5176.15 5176.15 5176.15 5176.15 5176.15

Cartel Surplus . . . . . 4771.95 4932.46 4990.5 5147 4960.48

Bids
Player 1 453.53 514.83 592.71 592.71 538.44 304.38 274.31 244.81 194.88 254.6
Player 2 437.3 437.3 514.83 581.96 492.86 78.89 49.9 38.98 7.04 43.73
Player 3 170.14 437.3 437.3 565.54 402.59 0 0 0 0 0

Average Bids 353.67 463.16 514.96 580.07 127.76 108.1 94.6 67.31

Table 1: Equilibrium outcomes with a benevolent agency for H(α)∼ E(0.23) and G(x)∼N(500,200)
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Threshold δ∗

bl bd bv bu

δ∗ 0.143 0.241 0.318 0.516

Table 2: Threshold δ∗ according to bl ,bd,bv,bu

this outcome strictly dominates the other three in terms of bidders’ surplus. It transpires that if

we consider the bidding agency as endorsing the role of a mediating device , when setting ε = 1,

which is an equivalent situation as collusive profits strictly equate non-cooperative profits, the

agency implements a Nash outcome that Pareto-dominates any other non-cooperative outcome

from the bidders’ viewpoint.

If the agency were to set ε = 0, i.e., no surplus extraction from the collusion, then internal

rivalry is reduced to the lowest level compatible with an efficient allocation and the mechanism

implements the first-best outcome as defined in definition 2. Only the highest and the second-

highest valuing member are active at the main auction whereas the lowest-valuing member is

inactive. For instance, take the solution implemented according to bu. Bidder 1 bids bN
1 ' 195,

bidder 2 bids bN
2 ' 7.04 and bidder 3 does not bid. Although it does not affect allocative efficiency,

the active collusion destroys the seller’s revenues as they fall from Ru = 5115.17 to RN
u = 29.15 if

bidders behave according to bu, which would also correspond to the best solution in terms of the

bidders’ welfare, i.e., BSN
u = 5147.

Description of Tables 3 and 4: The computed values of the optimal fee threshold δ∗ are pre-

sented for each outside option in Table 2. We take the overall average value of the 1000 instances

run. We compute in Table 4 the collusive solution when the agency set ε> 0 for which data were

arbitrarily divided in three parties. Results for the optimum situation ε∗ = δ∗ are depicted in the

middle class of data, the left-hand side of the table corresponds to a flat-fee ε′ = δ∗
2 and the right

hand side to a flat-fee ε′′ = 1.5δ∗. In contrast to the benevolent situation, the agency, by setting

the flat-fee to its optimal level, implements an outcome that, from the bidders’ viewpoint, strictly

Pareto-dominates all other collusive solutions, i.e., the solution computed according to bl for which
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Corresponding NC outcomes

bl bd bv bu Average

Surplus
Player 1 790.28 790.28 633.53 104.9 579.77
Player 2 685.22 495.27 495.27 0 418.94
Player 3 . . . . .

Seller Revenue 3723.88 3913.85 4070.6 5094.43 4200.69

Total Surplus 5199.3 5199.3 5199.3 5199.3 5199.3

Bids
Player 1 431.12 466.65 592.71 592.71 520.79
Player 2 437.3 437.3 466.65 571.75 478.25
Player 3 385.58 437.3 437.3 565.54 456.45

Average Bids 418 447.1 498.9 576.67

Table 3: Equilibrium NC outcomes corresponding to the non-neutral agency case for H(α)∼ E(0.23)
and G(x)∼N(500,200)

individual surpluses are πN1 ' 1448.38, πN2 ' 1343.4 and πN3 ' 658.

It can be observed that the bidding agency’s profits are maximum when ε∗ = δ∗ and strictly

increase whenever the outside option is assumed to be that of high equilibrium prices, in con-

trast to the bidders’ individual surpluses. Once ε> δ∗, these profits mechanically fall as collusive

bids strictly increase causing contributions to fall. This corresponds to the underlying idea of

proposition 3. For instance, the solution implemented according to the outside option bl gives

ΓN ' 201.31, an average contribution ω̄ ' 831.77 when ε′ = 0.5∗δ∗. This gives ΓN ' 366.8, an

average contribution ω̄ ' 780.37 when ε′ = δ∗. This gives ΓN ' 0, the average contribution ω̄ ' 0

when ε′ = 1.5∗δ∗. The seller strictly benefits from an increase in ε and, note, its revenues are

quite close to their corresponding non-cooperative level (around RN ' 3723). Once the fee level

crosses the threshold δ∗, collusive bids strictly converge to the lowest Nash equilibrium in price

and the lowest-valuing member competition can no longer be constricted.
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