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 Resumé 

Au cours du siècle dernier, les voitures privées ont dominé l'industrie du transport, exerçant 

une influence profonde sur l'activité économique. Ce paradigme centré sur la voiture a 

entraîné des coûts substantiels, en raison de l'augmentation de la congestion routière et des 

émissions de carbone En conséquence, les gouvernements sont soumis à une pression 

croissante pour développer des systèmes de transport plus efficaces et plus durables, tout en 

favorisant la croissance économique. En réponse, les villes ont de plus en plus adopté de 

nouveaux services de mobilité, tels que le covoiturage, afin d'améliorer l'efficacité des 

transports et la qualité de vie. 

 Si certains de ces services existent depuis longtemps, la révolution numérique a 

considérablement accéléré leur expansion et leur adoption. S'appuyant sur les principes de 

l'économie de partage, les plateformes de mobilité numérique offrent un accès à court terme 

à divers moyens de transport. Ces plateformes cherchent à déclencher des effets de réseau 

en connectant des marchés fragmentés, tant du côté de l'offre que de la demande, créant 

ainsi de nouvelles places de marché. Ce modèle est attrayant car il favorise une utilisation 

plus efficace du capital et offre des alternatives plus propres à l'utilisation individuelle de la 

voiture. 

 Pour répondre efficacement aux enjeux liées au transport, les plateformes de mobilité 

numérique doivent respecter trois principes fondamentaux : réduire la dépendance à l'égard 

de la voiture, résoudre les dilemmes des voyageurs et favoriser les complémentarités avec 

les transports en commun. Cependant, ces innovations ont considérablement modifié le 

comportement des utilisateurs, perturbant le secteur et remettant en question les acteurs 

traditionnels. En outre, l'absence de preuves empiriques solides nous empêche de 

comprendre si les plateformes de mobilité numérique adhèrent à ces principes. 

 Par conséquent, la question de savoir comment intégrer efficacement les plateformes de 

mobilité numérique dans les systèmes de transport existants reste un sujet d'étude actuel et 

pertinent. L'idée centrale de l'intégration est de favoriser la coordination entre les différentes 

parties prenantes afin de créer des systèmes de transport multimodaux qui offrent une 

alternative viable à l'utilisation de la voiture. Cette thèse contribue à ce débat en quatre 

chapitres : 

Chapitre 2 : S'appuyant sur la théorie de l'économie des plateformes, cette article  

développe une typologie de modèle d'affaire pour les plateformes de mobilité 
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numérique, en identifiant la proposition de valeur et les principaux avantages socio-

économiques générés par chaque type de modèle. Il est essentiel de définir clairement 

la proposition de valeur, car elle influence directement l'intervention publique. En 

outre, cette recherche explore la manière dont ces modèles d'affaires remettent en 

question la régulation traditionnelle, qui s'est historiquement concentrée sur la gestion 

des économies d'échelle du côté de l'offre. L’article examine également comment les 

stratégies conçues pour générer des effets de réseau peuvent conduire à des 

défaillances du marché. 

Chapitre 3 : Cette recherche étudie la dynamique du marché entre les transports en 

commun et les nouveaux services de mobilité. Dans ce chapitre, j'évalue de manière 

causale la substitution des transports en commun au partage de vélos à Mexico dans 

le contexte des perturbations du réseau de métro. Les résultats suggèrent une 

substitution importante au partage de vélos pendant les perturbations et une 

augmentation de la complémentarité par la suite. 

Chapitre 4 : Le chapitre suivant est consacré à l'examen des aspects réglementaires 

de l'intégration des services de partage de scooters électriques. Il étudie l'efficacité et 

les conséquences non intentionnelles des changements réglementaires mis en œuvre 

pour lutter contre le stationnement abusif à Paris. En exploitant la relation spatiale 

entre les trottinettes électriques stationnées et les zones de stationnement désignées, 

les résultats suggèrent que les zones de stationnement désignées réduisent 

efficacement le stationnement abusif, mais qu'elles limitent également l'accessibilité. 

Chapitre 5 : Cette étude explore la manière dont les systèmes de covoiturage 

interurbain peuvent contribuer à réduire les émissions de carbone. Le covoiturage 

offre un potentiel d'atténuation des émissions de carbone, mais il rend également les 

déplacements en voiture plus attrayants, ce qui a des répercussions incertaines sur 

l'environnement. Ce document développe un indicateur de base pour identifier 

l'efficacité du covoiturage dans l'atténuation des émissions de carbone et examine 

empiriquement l'impact de différentes politiques sur cet indicateur. Les résultats 

suggèrent que l'augmentation du coût des déplacements en voiture et l'incitation des 

conducteurs à se tourner vers les passagers sont des politiques prometteuses pour 

réduire les émissions de carbone. 
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 En résumé, cette thèse vise à examiner l'introduction de plateformes de mobilité 

numérique et les défis politiques liés à leur intégration dans le mix de mobilité existant. En 

examinant ces questions, cette recherche vise à offrir des informations précieuses aux 

décideurs et aux praticiens. Par exemple, comprendre comment ces services complètent les 

transports en commun et évaluer les effets indésirables potentiels peut aider les 

gouvernements à concevoir un système de transport multimodal plus efficace et plus 

durable. L'élaboration de réglementations qui orientent la technologie vers des objectifs 

économiques et environnementaux est primordiale pour l'organisation future des sociétés. 
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 Abstract 

Over the past century, private cars have dominated the transport industry, representing a 

crucial lever for economic growth. However, this car-centric approach has also come with 

substantial costs, due to increasing traffic congestion and carbon emissions. As a result, 

governments are under growing pressure to develop more efficient and sustainable 

transportation systems, while fostering economic growth. In response, cities have 

increasingly adopted new mobility services, such as ride-hailing and carpooling, to improve 

transportation efficiency and enhance quality of life. 

 Though some of these services have existed for a while, the digital revolution have 

significantly accelerated their expansion and adoption. Leveraging the principles of the 

sharing economy, digital mobility platforms provide short-term access to various means of 

transport. These platforms seek to trigger network effects by connecting fragmented markets 

on both the supply and demand side, thereby creating new marketplaces. This model is 

appealing because it promotes more efficient use of capital and offers cleaner alternatives 

to individual car-usage. 

 To effectively address transport-related concerns, digital mobility platforms must follow 

three fundamental principles: reducing car-dependency, tackling travelers’ dilemmas, and 

fostering complementarities with mass transit. However, these innovations have 

significantly changed users’ behavior, disrupting the industry and challenging traditional 

players. Moreover, the lack of robust empirical evidence limits our understanding of 

whether digital mobility platforms adhere to these principles. 

 Therefore, the question of how to effectively integrate digital mobility platforms into 

existing transport systems remains an ongoing subject of scrutiny. The core idea behind 

integration is to foster coordination among various stakeholders to create multi-modal 

transport systems that offer a viable alternative to car usage. This thesis contribute to this 

debate in four chapters: 

Chapter 2. Building on the theory of platform economics, this paper develops a 

business model typology for digital mobility platforms, identifying the value 

proposition and the primary socio-economic benefits generated by each type. Clearly 

defining the value proposition is crucial, as it directly influences public intervention. 

Additionally, this research explores how these business models challenge traditional 

regulatory governance, which has historically focused on managing supply-side 
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economies of scale. The paper also examines how strategies designed to generate 

network effects might lead to market failures. 

Chapter 3. This section studies the market dynamics between public transport and new 

mobility services. In this chapter, I causally assess public transport substitution to bike-

sharing in Mexico City in the context of disruptions in the subway network. The 

findings suggests a substantial substitution to bike-sharing during disruptions and a rise 

in complementarity afterwards.  

Chapter 4. The next chapter focuses on examining the regulatory aspects of integrating 

e-scooters sharing services. It studies the effectiveness and unintended consequence of 

regulatory changes implemented to address improper parking in Paris. By exploiting 

the spatial relation between parked e-scooters and designated parking zones, the 

findings suggest that designated parking zones effectively reduce improper parking, but 

they also limit accessibility.  

Chapter 5. This study explores how intercity carpooling systems can contribute to 

mitigate carbon emissions. Carpooling holds potential for carbon mitigation, however, 

it also makes car travel more attractive leading to uncertain environmental impacts. This 

paper develops a baseline indicator to identify the effectiveness of carpooling in carbon 

mitigation and it empirically examines the impact of various policies on such indicator. 

The findings suggest that raising the cost of car travel and incentivizing drivers to 

switch to passengers are promising policies to mitigate carbon emissions. 

 In summary, this thesis aims to examine the introduction of digital mobility platforms 

and the policy challenges involved in integrating them with the existing mobility mix. By 

delving into these issues, this research seeks to offer valuable insights for decision-makers 

and practitioners. For instance, understanding how these services complement mass transit  

and assessing potential undesired effects can help governments to design more efficient and 

sustainable multi-modal transport system. Crafting regulations that guide technology toward 

economic and environmental objectives is paramount for the future organization of 

societies. 

 

 



 

 

 

 

 Introduction 
 

 

« L'homme est fou. Il adore un Dieu invisible et détruit une nature 

visible, inconscient que la nature qu'il détruit est le Dieu qu'il vénère » 

Hubert Reeves (alleged) 

 

 

 

We stand at a pivotal moment in human history, where the long-standing paradigms for 

production and consumption have led to economic, social, and environmental degradation. 

This underscores the need for structural reforms in our current economic systems to build a 

better future. This transformation must enhance efficiency, improve quality of life, and 

move away from the anthropocentric worldview. 

 At the same time, the world is experiencing a technological revolution fueled by 

unprecedented advancements that are reshaping the way we live. However, if we fail to 

guide these innovations toward achieving socio-economic objectives, this process of 

creative destruction could result in significant social costs. Conversely, the digital revolution 

have the potential to deliver substantial welfare gains with the right regulatory policies and 

strong institutional frameworks in place.  

 This doctoral thesis examines the ongoing transformation in the transport sector, driven 

by the emergence of new mobility modes. Though some of these services have been around 

for a while, the digital revolution has significantly accelerated their expansion. Leveraging 

the principles of the sharing economy, digital mobility platforms connect fragmented 

markets on both the supply and demand side, creating new marketplaces. This model has 

been embraced globally for promoting more efficient use of capital and offering cleaner 

alternatives to individual car usage. 

 This transformation presents numerous opportunities, but it also requires a deep 

understanding of the disruptive forces at play to ensure that innovations are directed toward 

achieving common goals for a sustainable future. This humble work seeks to contribute to 

make decisions to make it better. 

 Chapter 1 

** 
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The structure of the thesis is outlined as follows. This Chapter 1 serves as an introduction, 

presenting the motivation, problematic, research question, and discussing the relevance of 

the research. Chapter 2 examines how the transformation of the industry is challenging the 

current regulatory policies and presents the main arguments for public intervention. The 

thesis’ primary contribution to knowledge is presented in three standalone but 

interconnected papers in Chapters 3 to 5. The thesis concludes with a discussion on the 

policy implications associated to the findings presented along these Chapters. 

 

1. Motivation 

 

Private cars have dominated the transport industry for nearly a century, representing a 

crucial lever for economic growth. The early nineteenth century was marked by the 

invention of vehicles powered by internal combustion engines. However, it was after WWII 

that factors such as population growth, suburban expansion, and policies designed to 

stimulate consumption to transform war-time industries, led to a rapid rise in individual car 

ownership. This innovation reshaped cities layouts and commuting habits, offering 

flexibility, independence, and accessibility at affordable prices. As the twentieth century 

unfolded, most people lived in a car-dominated society. 

 However, this car-centric paradigm has incurred significant social and environmental 

costs, ultimately contributing to economic degradation. At the end of the last century, 

governments began to recognized the limitations of expanding physical capacity to deal with 

the pervasive use of individual vehicles. For instance, increasing road networks leads to 

higher traffic congestion resulting in highly inefficient investments, particularly in a world 

with scarcity of space.1 As a matter of fact, the INRIX Global Traffic Scorecard estimates 

that traffic congestion cost the United States nearly 81 billion USD in 2022 (INRIX, 2023).2 

Moreover, using cars to commute is highly inefficient as they remained unmoved 95% of 

the time (Inci, 2015) and their occupancy rate is close to one almost everywhere.3 

 
1 Also known as the Braess paradox named after the work of Braess in 1968. 
2 According to the 2022 INRIX Global Traffic Scorecard, traffic congestion cost £9.5 billion for UK, and 3.9 

billion € for Germany. 
3 For example, the car occupancy rate is 1.08 in France, 1.14 in the UK, and 1.13 in the US, according to the 

French Enquête Nationale Transports et Déplacements in 2008, the United Kingdom national travel survey in 

2019, and the National Household Travel Survey from the US Department of Transport in 2009. 
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 This time also marked the recognition of road transportation as one of the main sources 

of carbon emissions alongside growing awareness of the environmental damage and adverse 

health effects associated with car pollutants. Other issues such as security, violence, and 

social injustice are also associated to the car-oriented paradigm. According to the European 

Commission, the transport sector is responsible for 25% of total greenhouse gas emissions.4 

In addition, approximately 300,000 annual deaths globally are attributable to local pollutants 

such as PM2.5 and O3 emitted from cars (Xiong et al., 2022).5 See Miner et al. (2024) for a 

compelling review of the harms caused by cars. 

 This scenarios has prompted the need of deep structural reforms to transform the industry. 

The main goal is to transform transportation into an efficient and sustainable mobility 

system that continues to contribute to economic growth while improving citizen’s quality 

of life. Mobility has indeed become a priority on of public agendas worldwide. For instance, 

the European Green Deal targeted a reduction of 90% in emissions from the sector by 2050 

and promoting new mobility is in the core of the initiative.6   

 In efforts to achieve such transition, cities have embraced the emergence of new mobility 

modes to complement other policies such as the promotion of electric vehicles, as they alone 

cannot effectively alleviate all transport-related concerns. Some examples of these new 

mobility modes are ride-hailing and carpooling.7  

 

2. Digital mobility platforms: Preliminaries  

 

 Operating on the principles of the sharing economy, new mobility modes offer short term 

access to means of transport (Shaheen & Cohen, 2019; Botsman & Rogers, 2010). They are 

considered as an attractive model as they promote a more efficient use of capital as well as 

cleaner alternatives to individual cars. For example, they increase occupancy rates, the 

frequency of vehicle usage, and represent an alternative during highly congested 

 
4 See European Commission – Mobility and Transport website [Accessed: 4th September, 2023]. 
5 PM2.5 are particulate matter with aerodynamic diameters lower than 2.5μm and O3 is surface ozone. Air 

polluted with these concentrations is associated with all-cause circulatory diseases, ischemic heart disease, 

lung cancer mortality, premature births, and in children it contributes to reduced lung volumes and increased 

risk of asthma and leukaemia (Miner et al., 2024). 
6 See European Commission – Green Deal website [Accessed: 4th September, 2023]. 
7 In ride-hailing, people hires a personal driver while in carpooling (or ride-sharing) drivers share their rides 

with other users. The most representative companies are Uber for ride-hailing and BlaBlaCar for carpooling. 

https://transport.ec.europa.eu/transport-themes/urban-transport/sustainable-urban-mobility_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en


 

Page 4 

 

 

environments. Additionally, services such as bike-sharing offer vehicles powered by human 

effort or by electric engines providing cleaner options. 

 Nonetheless, the fragmentation of the market due to many distributed means of transport 

poses considerable restrictions to users as it requires large amounts of information to make 

decisions. This has led to the innovation of the so-called Mobility as a Service or MaaS, 

which central idea is the develop a single application for travelers to plan, book, and pay for 

a combination of multiple mobility modes (Hietanen, 2014; Hensher et al., 2020). 

 It is noteworthy that some of these services have existed for decades, however, the 

undergoing digital revolution has facilitate their expansion and adoption at large scale 

(Cohen & Kietzmann, 2014).8 For instance, only 15% of US adults had ever used ride-

hailing services such as Uber in 2015, but three years later that figure had risen to 36% 

(BCG, 2019). Moreover, according to the European Shared Mobility Annual Review 2023, 

the number of trips provided by vehicle sharing modes increased 144% since 2020 (from 

245 to 600 million trips) and the fleet size more than doubled (from 450 to 930 thousand 

vehicles).9  

 One element of success of the sharing economy lies in the accumulation of substantial 

network effects (Montero & Finger, 2021). The central idea is that costumers derive positive 

benefits when other costumers consume the same good creating a network (Katz & Shapiro, 

1985). As a result, the utility of each consumer increases with the number of users in the 

network. To manage network effects, these companies must function as a platform 

compensating users for the benefits they bring joining the network (Belleflamme & Peitz, 

2021). However, when such transaction is costly, users may have no incentives to participate 

preventing any form of exchange.  

 The digital revolution has allowed mobility platforms to reduce these transaction costs, 

enabling efficient interactions between users that would otherwise be impossible. 

Additionally, digitalization enables economies of scope due to an efficient aggregation of 

demand and a rapid organization of various distributed means of production, which are key 

 
8 For instance, bike-sharing systems first appeared in Amsterdam on July 1965 with no success. Other small 

and unsuccessful programs were launch in Denmark, England, France, and Germany in the 90s. However, the 

first successful program was launch un Lyon, France in 2005 followed by the Vélib’ system launched in 2007 

in Paris (DeMaio, 2009). 
9 The Index encompasses shared bikes, scooters, mopeds and cars. Ride-hailing services (e.g. Uber, FreeNow), 

car-pooling (e.g. Klaxit, BlaBlaCar) and long-term rental services (e.g. Swapfiets) are not included. The survey 

was retrieved from the Fluctuo mobility enablement website [Accessed: 14th August, 2024]. 

https://european-index.fluctuo.com/
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elements in the sharing economy. Furthermore, digital mobility platforms collect and 

process large amounts of individual information to adjust supply and demand, thereby 

enhancing market efficiency. 

 

3. Problematic and research question 

 

Despite their seeming potential, it has being recognized that to effectively address transport-

related concerns, digital mobility platforms must stick to three fundamental principles: 

reducing car-dependency (ITF, 2021; Goodwin, 1977), tackling travelers’ dilemmas (Lesh, 

2013; Shaheen & Chan, 2016), and improving accessibility (Shaheen S. et al., 2017).10 In 

this context, it is crucial to foster complementarities with public transport to promote 

multimodality where users can combine two or more transport modes to complete their 

journeys without the need of private cars (Meng et al., 2020; Kenyon & Lyons, 2003; Ciari 

& Becker, 2017).  

 However, it remains uncertain whether these services align to these principles. For 

instance, the interaction between digital mobility platforms and public transport remains 

subject to debate due to contradictory results in empirical research (Cats et al., 2022; Hall 

et al., 2018). Additionally, the spatiotemporal usage of digital mobility platforms may differ 

from conventional services disrupting the current organizations of the public space (Reck et 

al., 2021; McKenzie, 2019; Younes et al., 2020; Brown et al., 2020). Furthermore, A better 

understanding on how users change their behavior in the presence of digital mobility 

platforms is crucial to prevent undesired outcomes, such as increased congestion and carbon 

emissions (Coulombel et al., 2019).  

 Another concern is related with the accumulation of strong positive network effects that 

occur when the value of the platform for each user increase as more users join the network 

(Belleflamme & Peitz, 2021). Consequently, platforms benefit from increasing returns, as 

users are often willing to pay more to be part of a larger network. Therefore, scaling up the 

number of participants in the platform is key to generate larger network effects. 

 
10 For travelers’ dilemma, often exemplified as the first/last mile problem, refers to situations where the 

location of public transport lies beyond the comfort zone of travelers , individuals are more inclined to rely on 

their cars for transportation. 
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 The increasing returns associated with these effects can incentivize companies to engage 

in aggressive competitive practices to rapidly attract participants and expand swiftly,  

potentially displacing established incumbents. Therefore, the presence of strong positive 

network effects may result in market dominance of a limited number of actors or even lead 

to the establishment of natural monopolies (Montero & Finger, 2021). 

 The rise of digital mobility platforms is driving the need for an evolution in regulatory 

governance due to the potential consequences for the presence of strong dominant players. 

This companies might be tempted to leverage their power to eliminate competition and to 

diminish consumer benefits without the risk of losing demand, ultimately harming social 

welfare. For example, digital mobility platforms might set predatory prices to deter 

competition and stimulate demand (Dubé et al., 2010) or to use big data and sophisticated 

algorithms to steer consumer decisions in ways that primarily serve the platform's interests. 

 Disruptions play a pivotal role in the transformation of the industry because it is central 

to the process of creative destruction. However, without appropriate policies to mitigate 

adverse effects or swiftly respond to unforeseen consequences, disruptions can lead to 

detrimental outcomes. Therefore, the question of how to effectively integrate digital 

mobility platforms into existing transport systems remains an ongoing subject of scrutiny. 

The core idea behind integration is to foster coordination among various stakeholders to 

create multi-modal transport systems that offer an efficient and sustainable alternative to 

private cars. 

 

4. Relevance 

 

Allocating resources towards addressing the aforementioned question is crucial because the 

choices we make today will lay the foundations for our future cities. The ecological 

transition in the mobility sector holds the promise of enhancing social welfare. The mobility 

system of the future must prioritize efficiency and quality of life by alleviating congestion, 

improving connectivity, enhancing spatial equity, an achieving zero carbon emissions. In 

the words of Sperling et al. (2018), humanity stands at a pivotal juncture, where “decisions 

today will strongly influence the path and speed of the change”.  

 This transition presents substantial challenges as urban density continues to rise. In 2007, 

the global urban population exceeded the rural population for the first time in history, 
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according to The World Bank. By 2021, 56% of the world’s population, or 4.4 billion 

people, lived in cities.11 Projections suggest that by 2050, 7 out of 10 people will reside in 

urban areas.12 Therefore, policy decisions today must prioritize the development of better 

spaces for people, the promotion of green mobility, and the enhancement of public transport 

systems (Banister, 2008).  

 Moreover, as any other network industry, transportation has historically been 

characterized by strong supply-side economies of scale. This has posed significant 

challenges for regulatory governance, as companies often leverage these economies of scale 

to dominate the market, leading to social welfare losses. The rise of digital mobility 

platforms introduces new challenges for public intervention, highlighting the need for an 

evolution in regulatory governance. However, governments may struggle to effectively 

address these challenges due to a limited understanding of how stimulating network effects 

can result in market failures.  

  

5. Contribution 

 

This doctoral thesis examines the rise of digital mobility platforms and the policy 

implications of their introduction. Through rigorous empirical analysis, it aims to enhance 

understanding of how to effectively integrate these platforms into multimodal transport 

systems while minimizing potential undesired effects. The insights provided here are 

essential for informed decision-making and the development of regulations that align with 

societal and environmental goals. 

 The main contribution of this thesis is developed in three papers comprising Chapters 3 

to 5. These papers share several characteristics. First, they contribute to fill gaps in the 

literature of transport economics, public management, and organizational studies, focusing 

on: 1) market dynamics in relation to public transport, 2) the impact of regulation and public 

intervention, and 3) the efficacy of new modes to mitigate carbon. Second, all papers adopt 

a micro-level approach from the normative perspective, examining interactions between 

individual units and their respective environments. These units differ across papers and 

include individual e-scooters, bike-sharing journeys, and intercity carpooling itineraries. 

 
11 The World Bank: Urban population (% of total population) [Accessed: September 5th, 2023]. 
12 The World Bank: Urban Development [Accessed: September 5th, 2023]. 

https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
https://www.worldbank.org/en/topic/urbandevelopment/overview
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Third, econometrics techniques are predominantly employed to assess relevant hypotheses 

in each case. Lastly, all papers acknowledge the space as a key component in the analysis 

of transportation. For instance, the first and second papers leverage on the spatial 

relationship between the unit of study and the built environment, while the third paper 

considers geo-localized fuel-prices to ascertain trip costs in carpooling itineraries. 

 Besides the common grounds, each paper makes unique contributions to distinct areas of 

the literature. The first paper (Chapter 3) assess public transport substitution to bike-sharing 

in Mexico City. In this paper, I exploit an extemporaneous event that disrupted the city’s 

subway system to causally identify modal shift to bike-sharing. By leveraging the spatial 

relationship between bike-sharing and subway stations, this study reveals a significant 

increase in bike-sharing usage during public transport disruptions. Furthermore, I present 

evidence of a subsequent rise in demand for bike-sharing following the restoration of 

subway services. Lastly, the paper investigates whether this surge in bike-sharing impacts 

subway ridership. The results suggests a rise in complementarity between the two systems. 

The evidence presented in this paper have important policy implications for designing 

resilient multimodal transport systems that align with sustainability objectives. 

 The second paper (Chapter 4) examines the regulatory aspects of integrating digital 

mobility platforms into existing multimodal transportation systems. It examines the 

introduction of dockless e-scooters in Paris and the regulatory changes implemented to 

address issues related to improper parking. The case study of Paris is particularly relevant 

due to the city's efforts to reallocate public spaces exclusively for e-scooter parking. By 

exploiting the spatial relation between parked e-scooters and designated parking zones, this 

paper proposes Key Performance Indicators to assess the impact of regulations on users 

behavior and accessibility. The findings suggest that designated parking zones effectively 

reduce instances of improper parking. However, they also limit e-scooter accessibility by 

constraining pick-up and drop-off points for users. 

 The last paper (Chapter 5) explores how carpooling systems can contribute to mitigating 

carbon emissions. Carpooling is considered as a promising innovation for carbon mitigation. 

However, its adoption makes car travel more attractive, leading to uncertain environmental 

impacts. This paper has two objectives. First, it aims to develop an indicator to assess the 

effectiveness of carpooling in mitigating carbon emissions. Second, it examines the impact 

of various policies on the baseline indicator. The findings suggest that the potential for 
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carbon mitigation crucially relies on the occupancy rate, which reflects travelers' preferences 

over alternatives. Moreover, we argue that raising the cost of car travel through fuel price 

hikes is associated with increased supply and demand for carpooling. These responses vary 

depending on users experience, with novice users exhibiting more pronounced effects. 

Additionally, the research underscores the promising prospect of incentivizing drivers to 

switch to passengers, as this transition holds the potential for significant carbon mitigation 

outcomes. These findings offer valuable insights for designing effective policies aimed at 

promoting carpooling and reducing carbon emissions associated with individual vehicles. 

 I conclude the thesis with key policy recommendations based on the insights gained 

throughout these Chapters. As innovations continue to transforms the industry, it will be 

essential to strengthen the current regulatory governance to harness the benefits offered by 

digital mobility platforms minimizing potential adverse effects. 
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1. Introduction 

 

From the introduction of the first mass transport service 150 years ago in France, the 

Omnibus,1 governments have intervened to organize the industry with the aim of fostering 

economic growth. However, the introduction of new services such as ride-hailing and 

carpooling has disrupted such organization transforming the way transport services are 

provided. These innovative services function as platforms providing services under the 

principles of the sharing economy. Leveraging on efficiency gains due to the digital 

revolution, mobility platforms derive economic benefits managing network effects. This 

innovate business model approach is putting under pressure the historical regulatory 

governance developed to manage conventional economies of scale from the supply side.  

 As any other network industry, transportation has been historically marked by strong 

economies of scale from the supply side. In other words, transport companies experience a 

 
1 See Gourdon (1841) for a fascinated narrative on how the Omnibus changed the live of Parisians at the end 

of the 19th century. 

 

*In collaboration with Eric Brousseau (Chair of Governance and Regulation, University Paris-Dauphine|PSL). 

 Chapter 2 
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cost advantage by increasing the volume of service provision. Economies of scale poses 

significant challenges for regulators because companies typically used them to dominate the 

market resulting in social welfare losses. Over time, governments have learned how to 

regulate the industry to prevent such practices. For example, granting legal monopolies 

(state-owned or a regulated private company) ensures an efficient deployment and 

exploitation of transport infrastructures while maintaining affordability and universal 

access. Enforce competition, especially at the level of the service provision, is another policy 

strategy that lower prices and improve quality of service. 

 The past decade have witnessed the emergence of digital mobility platforms, innovations 

that have been embraced by governments due to their potential to improve the efficiency of 

transport systems easing traffic congestion, carbon emissions, and lack of access. Operating 

under the principles of a platform economics, they "bring together economic agents to 

actively manage the network effects between them" (Belleflamme & Peitz, 2021). Positive 

network effects occur when the value of the platform for each user increase as more users 

join the network. Consequently, the platform benefit from increasing returns, as users are 

often willing to pay more to be part of a larger network. 

 Additionally, these platforms leverage on the digital revolution to significantly reduce 

transaction costs, enabling the creation of new marketplaces that were previously 

unimaginable. They are capable of organizing a vast array of distributed means of 

production and efficiently aggregating demand, benefiting from economies of scope. By 

harnessing large volumes of data, digital mobility platforms can influence user behavior and 

swiftly adjust supply and demand, thereby enhancing market efficiencies. As a result, they 

develop highly effective coordination mechanisms that bridge fragmented market on both 

the supply and demand sides. 

 Network effects in digital platforms present significant challenges for regulatory 

intervention. The increasing returns associated with these effects can incentivize companies 

to engage in aggressive competitive practices to attract and retain consumers. This, in turn, 

may lead to highly concentrated markets where dominant players are tempted to leverage 

their power to eliminate competition and diminish consumer benefits without the risk of 

losing demand, ultimately harming social welfare. For instance, digital mobility platforms 

might set prices at very low levels, or even at zero, to stimulate demand (Dubé et al., 2010). 

Additionally, these platforms often utilize big data and sophisticated algorithms to offer 

personalized services, which can subtly steer consumer decisions in ways that primarily 

serve the platform's interests. 
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 Overall, the rise of digital mobility platforms is driving the need for an evolution in 

regulatory governance. However, governments might not be prepared to address these 

challenges due to a limited understanding of the diverse business models employed by these 

companies. According to Snihur & Markman (2023), the way the value proposition is 

framed strongly influence the reaction of regulators. Therefore, a clear articulation of the 

value proposition of these platforms is essential to justify public intervention and to 

determine whether the practices used to stimulate network effects result in market failures. 

 The literature on digital platform business models is a relatively nascent trend in the 

literature, especially after the success of digital platforms such as Airbnb and Uber (Snihur 

& Markman, 2023). The study of platform business models in the mobility sector remains 

relatively underexplored, with the work of Cohen & Kietzmann (2014) standing out as one 

of the most relevant. In their research, the authors examine the key characteristics of various 

business models within the shared mobility. They also apply agency theory to analyze how 

differences among these business models, combined with the interests of local governments, 

lead to a misalignment of incentives, ultimately hindering efforts to address deficiencies in 

mass transit systems. 

 The literature on the regulation of digital mobility platforms is scarce. Scholars have 

recently explored the regulatory and institutional implications aimed at promoting app-

based and integrated mobility services (Hensher et al., 2020; Wilson & Mason, 2020; 

Karlsson et al., 2020; Smith et al., 2018; Smith & Hensher, 2020; Lajas & Macário, 2020; 

ITF, 2023).2 Similarly, studies about the regulation of online platforms constitute a nascent 

literature, with some reports examining key characteristics of digital platforms (Treasury, 

2019; Scott-Morton et al., 2019; Crémer et al., 2019) and some papers focusing on the 

evolution of regulatory policies and institutional design  (Cantero, 2017; Cusumano et al., 

2021; OECD/KDI, 2021; Kerber, 2023).  

 Notable contributions to this field include the series edited by Finger & Audouin (2019) 

and the book by Montero & Finger (2021), which serve as excellent starting points for 

understanding this subject matter. These studies explore how digital mobility platforms 

disrupts markets and highlight the necessity of enhancing regulatory policies to keep pace 

with innovations. 

 
2 Integrated mobility, also referred to as Mobility as a Service (MaaS), is a one-stop access for users to combine 

multiple transport modes in their itineraries (Mukhtar-Landgren et al., 2016). 
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 The key contribution of this paper is twofold. First, we clearly identify the nature of 

regulatory challenges posed by new digital mobility platforms. Governments have 

historically intervened in the market to manage supply-side economies of scale to prevent 

abusive practices from dominant players in the market. New services are challenging this 

view as they trigger network effects. Therefore, governments must evolve their regulatory 

governance following this logic. Second, this papers propose a business model typology for 

digital mobility platforms to better understand their value proposition from precisely from 

the perspective of the management of network effects. Furthermore, we identify practices 

followed by these platforms aimed at triggering network effects that could create market 

failures. We then characterize them following the economic theory. 

 The rest of this chapter is structured as follows. Section 2 briefly reviews the public 

intervention in the transport sector since the 19th century. It seeks to summarize different 

regulatory tools implemented to manage economies of scale. Section 3 focuses on recent 

innovations in the transport sector, framing new mobility within the platform and digital 

economy. The proposed business models’ typology for digital mobility platforms is 

presented here. In Section 4, we relate platforms’ practices and market failures and discuss 

various policy implications derived from our analysis. Finally, Section 5 offers concluding 

remarks. 

 

2. Brief history of regulatory policies in mass transport 

 

Public interventions in transport have existed for centuries aiming to organize the means of 

production and to manage the space for the use of multiple actors. However, it was not until 

the late nineteenth century that governments designed institutions and set regulatory 

frameworks with the goal of achieving social benefits and economic growth. By reflecting 

on the evolution of these interventions, we seek to better understand how recent innovations 

challenge the historical approaches to regulate transport services.  

 Mass transport originated in Nantes, France in 1826 when Stanislas Baudry introduced a 

shuttle service to transport customers from his bathhouse business to the city center.3 This 

horse-powered carriage, with a capacity of sixteen passengers, rapidly caught attention from 

other residents who embraced it as a viable mean of transportation. Baudry saw a business 

 
3 The historical recapitulation of the Omnibus was mainly obtain from Gourdon (1841), RATP (2017) and 

from the blog Parisian Fields, The invention of the omnibus, consulted on August 20, 2023 from 

https://parisianfields.com/2014/05/11/the-invention-of-the-omnibus/. 

https://parisianfields.com/2014/05/11/the-invention-of-the-omnibus/
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opportunity and launched the first ever urban transport service named Omnibus.4 It 

commenced operations in Paris in 1834 under the permission of authorities who mainly 

worried about congestion. Boudry’s company, Enterprise Générale des Omnibus, along 

with two competitors, obtained license to operate, albeit with the city retaining control over 

routes, as well as the number and size of couches.5 

 Despite its popularity, the high maintaining costs of horses, low-demand in certain routes 

designed by the city, and tough competition, render the Omnibus an unprofitable venture. It 

wasn’t until 1854 that the services became lucrative through the merger of all competitors 

establishing the Compagnie Générale des Omnibus. As congestion increased and demand 

grew, the city build railways and pressure the Compagnie to transit  from  horse-drawn 

carriages to horse-drawn trams. Eventually, around 1880, horses were replaced by electric 

motors. The last journey of an Omnibus in Paris occurred on January 11th, 1913, between 

La-Villette and St-Sulpice.  

 The history of the Omnibus reveals that the regulation of transportation fall under the 

power of local governments who were more aware and more capable of managing public 

space than national states.6 However, the rapid industrialization and the emergence of 

national markets in the late nineteenth century led to an era of federalism marked by a strong 

interventionism from the national government. This intervention manifested through new 

institutional arrangements and regulatory frameworks designed to harness the benefits of 

industrialization (Johnson, 2009). 

 One fundamental part of the industrialized movement is the rapid expansion of interstate 

railroads. These companies enjoyed economies of scale and scope and wielded considerable 

economic power in national markets. Eliminating competition, either by setting predatory 

prices or by colluding with smaller counterparts, railroads established the first natural 

monopolies over specific regions. Nonetheless, it was their abuse of power over shippers 

and passengers that incited public indignation ultimately leading to the establishment of the 

first national regulatory intervention. The primary objective was to eliminate any form of 

discrimination by fostering competition (Hadley, 1886).7 

 
4 The Latin word Omnibus means “for all”. 
5 In fact, the Omnibus was very popular all around the globe including cities such as London and New York.  
6 We acknowledge that the origins and influence of federalism is an open debate in political science. However, 

it is not open to discussion the fact that national states had no influence over the planning of urban transport 

systems at the end of the nineteenth century. 
7 For example, in the United States, the Interstate Commerce Act of 1887 make railroads subject to federal 

regulation and established the Interstate Commerce Commission (ICC). In contrast, the European approach 

predominantly favored state monopolies. 
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 The beginning of twentieth century marked the advent of the internal combustion engine; 

an innovation that profoundly altered the organization of the transport industry facilitating 

the expansion of more flexible and accessible modes of transport such as private cars (Mom, 

2014; Schrag, 2002). The strong competition faced by railroads lead to a significant 

contraction in the industry. Consequently, many private operators switched from tramways 

to fuel buses, a phenomenon known as the “motorization” of mass transport.8  

 In addition to technological evolution, rapid population growth exerted pressure to invest 

in railway-related projects.9 However, due to low demand, escalating deficits, and declining 

service quality, public intervention were needed to protect such investment. Gaining 

legitimacy as efficient managers of primary goods and services during the WWI, 

governments nationalized the railway industry.10 One relevant example is the consolidation 

of the National Company of the French Railways.11 

 These national monopolies were characterized by a strong vertical integration between 

operations and infrastructure management looking for efficiencies in the coordination costs 

over the entire supply chain.12 Moreover, the rapid urban expansion after WWII required to 

increase mass transit capacity. However, this expansion proved costly and ineffective in 

 
8 In London, for example, horse-drawn buses were entirely replaced by motorized buses within just 14 years, 

and trams gradually vanished from urban landscapes (Yuzawa, 2014). 
9 Several notable projects exemplify this effort. In London, The Metropolitan Railway, inaugurated in 1863 

the first underground line in the world known as “The Tube”. Initially operated by steam locomotives before 

electrification in 1901. Similarly, In Paris, la Compagnie du Chemin de fer Métropolitain de Paris (CMP) 

completed the construction of the first metro line (Ligne 1), in 1900. 
10 During wartime, the efficient management of dense logistical networks for military movements and resource 

allocation necessitated technological and organizational advancements. This prompted the evolution of 

administrative structures and governmental agencies, fostering new forms of coordination and cooperation 

with civil society, the primary providers of these resources. These factors legitimized state intervention, 

facilitating state control over essential industries, including railroads (Purseigle, 2014). 
11 In France, the national decree Décret-loi du 31 août 1937 portant réorganisation du régime des chemins de 

fer consolidated all private companies operating the network into one entity, the Société Nationale des 

Chemins de Fer Français (SNCF). Initially, the state owned 51% of the shares, allowing the companies to 

amortized their shares over 45 years until 1982. In the United Kingdom, the government assumed national 

ownership under the control of the British Transport Commission in 1947. In the United States, after numerous 

railway companies were bankrupt, the Rail Passenger Service Act of 1970 mandated the creation of the 

National Railroad Passenger Corporation, better known as Amtrak. 
12 Vertical integration constitutes a relevant topic in the literature of industrial organization. Please see Rey 

(2003), Vickers (1995), and Sappington (2006) for a comprehensive analysis on the economics of vertical 

integration, regulation, and advantages of vertical divestiture, relatively. 
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addressing issues such as congestion and coverage.13 This period was also marked by the 

recognition of transport as one of the main sources of carbon emissions.14  

 The need to modernized the industry to promote a more efficient and sustainable 

transport sector prompted efforts for institutional and organizational changes to revitalize 

railroads. Reforms pursued liberalization introducing vertical divestiture with the aim of 

triggering redistribute productivity gains to final customers. Competition in service 

provision might lower prices, improve quality of service, and trigger innovation besides 

improves transparency, monitoring, and accountability.15 

  As a result of these policies, mass transit has experienced a genuine. According to the 

International Transport Forum, road transport is expected to grow at a lower annual average 

rate than rail transport between 2015 and 2050 (3.4% vs. 3.8%). A similar trend is expected 

for private cars and urban transport among OECD members (-0.2% vs. 2.2%) (ITF, 2019).16 

Nonetheless, liberalization have not fully taken off and incumbents maintain substantial 

market shares. 

 The history of regulation in mass transit reveals that strong economies of scale in the 

industry leads to a highly concentrated market with strong dominant players. Therefore, 

public intervention has aimed at preventing these companies to abuse their position 

guaranteeing affordable and universal access. More recently, regulatory measures seek to 

improve efficiency, reduce carbon emissions, and trigger innovation.  

 However, this mode-specific regulatory approach has failed to effectively coordinate 

various means of transport, preventing societies from reaching an inflexion point where a 

combination of multiple modes can provide travelers with sustainable solutions that 

prioritize flexibility and accessibility at affordable prices. 

 

 

 
13 The seminal work of Braess (1968; 2005) revealed that increasing the capacity of road networks can 

paradoxically lead to higher congestion. Additionally, network expansion may induce demand, this effect is 

known as Downs-Thomson Paradox, The Pigou-Knight-Downs Paradox or the Lewis-Mogridge Position. See 

Arnott & Small (1994) for a comprehensive review.  
14 The United Nations Conference on the Human Environment, held in Stockholm in 1972, laid the 

groundwork for subsequent Conferences of the Parties (COP), including the Kyoto Protocol in 1997 (COP3) 

and the Paris Agreement in 2015 (COP21). 
15 One relevant example are the Railway Packages introduced by the European Commission intended to 

incrementally open up competition in the service provision and to establish a Single European Railway Area 

(For details please see https://transport.ec.europa.eu/transport-modes/rail/railway-packages_en). 
16 The scenario for non-OECD country member is 0.4%, 3.6%, and 12.4% for private cars, rail transit, and 

shared mobility, respectively. 

https://transport.ec.europa.eu/transport-modes/rail/railway-packages_en


Page 19 

 

3. Digital mobility platforms: A new era 

 

Increasing recognition of inefficiencies in the industry and the urgent need to reduce carbon 

emissions have prompted governments to embrace new mobility services. Operated by 

private companies, digital platforms offer mobility services on the principles of the sharing 

economy, i.e. they facilitate short term access to transportation via smart applications 

(Shaheen & Cohen, 2019; Botsman & Rogers, 2010). These innovations are attractive as 

they represent a more efficient use of capital, offer cleaner alternatives to individual cars, 

and hold the potential to improve connectivity and accessibility. Therefore, digital mobility 

platforms have become key players in the process of developing an efficient and sustainable 

transport system.  

 These platforms offer new types of mobility services characterized mainly by the mean 

of transport. Some of these services have existed for decades, however, recent technological 

advancements have facilitated their provision at extensive geographical regions representing 

true commercial ventures. It is noteworthy that the service type does not necessarily reflect 

the business model because it does not represent the value proposed by such companies. We 

extensively discuss this point in the next section. Some examples of these services are the 

following:  

Bike-sharing. Typically operated by a single private entity under the agreement with 

local authorities, these companies provide short-term and affordable access to bicycles 

located in stations throughout the city. Societies have experimented with these services 

since the White Bikes in 1965.17 Nevertheless, they have recently attracted the attention 

of citizens seeking cleaner and healthier transportation alternatives.18 

E-scooters-sharing. Similar to bike-sharing services, these companies provide access to 

e-scooters “free-floating” across the city. Subscribers can pick-up and drop-off e-scooters 

using smart applications at any location within certain geographical boundaries. 

Introduced for the first time in the summer of 2017 in Santa Monica, California by the 

 
17 One of the first bike-sharing system was the White Bicycle Plan during the Provos movement in Amsterdam 

followed by many unsuccessful programs around Europe. It was not until 2005 that the company JCDecaux 

launched Velo’v in Lyon (France) that bike-sharing systems successfully sustained services offering. See 

DeMaio (2009) and Parkes et al. (2013) for details about the history of bike-sharing.    
18 Some of the largest bike-sharing systems, in terms of the number of bike available, are  Hangzhou Public 

Bicycle in Hangzhou, China, Citi Bike in New York City, United States, Velib’ in Paris, France, and Santander 

Cycles in London, England. 
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company Bird, e-scooter-sharing services expanded to European cities within a year. 

These companies innovated to introduced shared bikes also in free-floating.19 

Car-sharing. These services have gained some popularity in recent years, although the 

market is not consolidated and various forms of approaches can be found. Some 

companies provide station-based services while others provide free-floating alternatives. 

Additionally, some companies offer their own cars while others facilitate transactions 

with private car owners.20  

Ride-hailing. This service involves matching passengers with personal drivers willing to 

offered the ride to passengers’ destination. Leveraging on geolocation technology, these 

companies offer drivers the benefit of hailed passengers from the streets on-demand. It 

is then considered an appealing modality for drivers to earn extra revenue monetizing 

their assets. Passengers also obtain benefits such as low search cost and security.21 

Carpooling. Similarly to ride-hailing, other companies match connections between 

nonprofessional drivers willing to share the ride with multiple passengers that are willing 

to share the cost of the journey. The French company BlaBlaCar provides solutions for 

inter-city transportation and it is the market leader holding large market shares in most 

European cities. 

Mobility as a Service. The multiplication of transport modes poses the structural 

challenge of coordinating multiple alternatives to provide flexible solutions. Mobility as 

a Service (MaaS) represents an innovation aimed at addressing this challenge. MaaS 

enables the combination of different transport modes through a single platform to provide 

a comprehensive transportation service. Travelers can plan, pay for, and access different 

modes using a single application (Smith et al., 2018). The first commercial MaaS service, 

Whim, was launched in Helsinki in 2017 by the company MaaS Global, whose CEO, 

Sampo Hietman, conceived the idea of MaaS in 2012.22 

 This rough categorization of new services overlooks the value proposed by these 

platforms and how they create value, which are key elements in conceptualizing business 

models. A clearer definition is then crucial for understanding how these platforms generate 

 
19 Within just two years of their debut, e-scooters sharing companies accounted for approximately 15% of the 

on-demand mobility market (BCG, 2019). Other relevant examples of companies are Lime, based in United 

States, and Voi, born in Sweden, both offers services all across Europe.  
20 Some examples of companies are Share Now | Free2move (Germany), Getaround (United States), 

Communauto (Canada), among many others. 
21 Companies such as Uber, Lyft, DiDi, or Bolt are leaders in the market. 
22 The literature related with MaaS has grown considerably in recent years, but the work by Hensher et al. 

(2020) is an excellent starting point. 
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revenue, deliver offerings, and interacts with direct and indirect stakeholders, such as 

regulators (Snihur & Markman, 2023). Therefore, well-defined business models are 

essential to enhance our understanding about the regulatory challenges posed by digital 

mobility platforms.  

 

3.1. Digital mobility platforms and the sharing economy 

 

Despite the fact that some digital mobility platforms are still in the process of consolidation, 

they have undeniably revolutionized the industry by overcoming historical challenges in the 

industry (Hadley, 1886).23 The digital revolution has enabled these companies to leverage 

smart technologies leading to the development of the so-called sharing economy. 

 One element of success of the sharing economy lies in the accumulation of substantial 

network effects (Montero & Finger, 2021). The central idea is that costumers derive benefits 

from the consumption of services when other costumers consume the same good (Katz & 

Shapiro, 1985). In other words, the utility of each consumer increases with the number of 

users in the network. Therefore, scaling up the number of participants in the platform is key 

to accumulate positive network effects.  

 Network effects are classified as within-group or cross-group network effects. When two 

users play the same role in the interaction (e.g., passengers), they belong to the same group. 

On the one hand, when one additional user impact other users from the same group then one 

talks about within-group network effects. On the other hand, the impact of additional users 

joining one group (passengers) on users from other group (drivers) is referred to as cross-

group network effects. Characterizing the various network effects is key to understand 

digital mobility platforms. 

 However, none of these concepts fully explain the proliferation of digital mobility 

platforms, which hinges on the their ability to “internalized” network effects. When users 

are not compensated for the benefits they bring to the network, they have little incentives to 

participate, making the transactions costly (Belleflamme & Peitz, 2021). In some cases, 

these costs can be so high that they prevent any form of exchange. The digital revolution 

has allowed mobility platforms to reduce these transaction costs, enabling efficient 

interactions between users.  

 
23 Fragmentation exists in both side of the market. Transport is a market with a heterogenous demand side in 

terms of activities, preferences, needs, etc. It is also fragmented in the supply side due to the large amount of 

transport modes, infrastructure, connectiveness, operators, etc. 
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 Digital mobility platforms can lower transaction costs to such an extent that they can 

create new market places that would otherwise be impossible. Moreover, they effectively 

manage network effects among multiple actors, deriving significant benefits from this 

process. Digitalization also enables economies of scope due to an efficient aggregation of 

demand and a rapid organization of various distributed means of production, which are key 

elements in the sharing economy. Furthermore, digital mobility platforms collects and 

process large amounts of individual information to adjust supply and demand, thereby 

enhancing market efficiency. 

 

3.2. Typology of business models 

 

 In the following section we introduce a new typology of business models that emphasizes 

the value proposition of various digital mobility platforms. The analysis focuses on how 

these business models generate and manage network effects among the different groups 

connected to the network. Additionally, we use the economic value created to each of these 

groups, as well as to society, to clearly delineate the boundaries of each business model. The 

findings of the analysis are presented in Table 1. 

 Data integrators are platforms that aggregate real-time data from multiple transport 

modes and provide it to customers in an organized and comprehensive manner. The 

information these platforms collect includes timetables, waiting times, routes, estimated 

arrival time, service interruptions, among others. These platforms typically help travelers to 

plan their journey in advance and to adapt in case of disruptions in the network. By 

centralizing information from various sources, they also enable travelers to seamlessly 

combine multiple modes of transport for door-to-door itineraries. Overall, these platforms 

reduce costs by optimizing travel time and contribute to better coordination among various 

transportation methods, leading to significant socio-economic benefits. 

 The value proposition of B2Sharing lies in offering fleets of transportation means for 

travelers to share over short periods of time. These transportation options are not limited to 

a specific type and can include bikes, e-scooters, trams, trains, autonomous vehicles, and 

more. Companies operating under this business model focus on managing within-group 

network effects, as they primarily influence the demand side. For example, in bike-sharing 

services, positive effects can occur if an increase in users leads to better redistribution of 
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bicycles across the city. However, negative effects might arise if a surge in users results in 

system congestion.  

 By leveraging smart and geolocation technologies, these models allow users to access 

vehicles on demand, significantly reducing travel cost. They enhance travelers’ flexibility 

by offering short-term access to vehicles tailored to their specific needs. In terms of the 

socio-economic values, geolocation technologies also contributes to a more efficient use of 

the public space. Furthermore, these platforms expand coverage by providing vehicles in 

time and zones where mass transit is unavailable. If they effectively complement mass 

transit, they could play a crucial role in reducing traffic congestion and carbon emissions. 

 P2P-Sharign models provide digital infrastructures to facilitate the connection among 

individual owners to share their assets with other travelers. Platforms following this business 

model typically facilitate the connection without directly matching users nor setting the 

conditions of the contract including prices. Instead, they restrict their intervention to ratings 

and recommendations as a way to actively manage cross-group network effects 

(Belleflamme & Peitz, 2021). 24 It is noteworthy that the pricing scheme in this business is 

defined for actors to share the cost of the trip.  

 Under these conditions, individual owners can decide whether to share their assets for 

the use of others or to become semi-professional drivers sharing their ride. Due to the cross-

subsidy, the value individual owners obtained from the platform is a more efficient use of 

their assets.  

 The value obtain by passengers is the access to transport means at low cost as the price 

of the journey is typically lower than the alternative due to the cost-sharing condition. In 

addition, this business model may provide transportation services in regions uncovered by 

traditional means improving passengers’ flexibility. These platforms serve for a better use 

of public space and hold potential to alleviate transport-related concerns by reducing solo-

driving and improving connectivity to mass transit. 

 
24 For instance, the amount of information about drivers increases with the number of passengers allowing the 

platform to do better recommendations and improve the quality of the match between drivers and passengers. 

This is an example of a positive cross-group network effect . 
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Table 1. Business model typology for digital mobility platforms 

 

1. This column excludes means of transport provided by B2Sharing companies, because the Table aims to reflect the values added to actors linked to the platform. 2. Seamless services are peripheral 

services that are traditionally provided in a separate market, but they could belong to the same segment. For example, Uber providing delivery services or car rentals. 3. The name was taken from Montero 

& Finger (2021). 4. See the work of Jacobides et al (2018) for details on the theory of platform ecosystems.

Business 

model 
Value proposition Examples 

 

Value to actors linked to the platform 

Providers of means 

of transport1 
 Seamless 

services2 
 Passengers  

Socio-economic value 

(supply)  (supply)  (demand)  

 

Efficient use 

and/or 

investment 

in assets 

Earn 

extra 

income 

 
Low-cost 

access to 

networks 

 
Reduce 

travel 

cost 

Improve 

flexibility 

and 

certainty 

Access to 

seamless 

services 

 

Better 

coordination 

of distributed 

means 

Better 

use of 

public 

space 

Reduce 

pollution 

Data integrators 

Provide and organize real-

time data collected from 

multiple transport modes. 

Citymapper 

Transit 
      

✓ 
   

✓ 
  

B2Sharing  

Provide fleets of 

transportation means to be 

shared among travelers in 

short periods of time. 

Velib’ 

Lime 

Europcar-

on-demand 

      
✓ ✓ 

  
✓ ✓ ✓ 

P2P-Sharing 

Facilitate the connection 

among individual owners to 

share their assets with other 

travelers. 

BlaBlaCar 

Getaround 
 
✓ 

    
✓ ✓ 

  
✓ ✓ ✓ 

Super-

intermediaries3 

Allow individuals to hire 

transport services from 

owners of private vehicles 

setting the conditions of the 

contract. 

Lyft  
✓ ✓ 

    
✓ 

  
✓ 

  

Platform 

ecosystems4 

Manage the connection of 

peripheral services to their 

core network generating 

strong complementarities.  

Uber 

DiDi 
 
✓ ✓ 

 
✓ 

  
✓ ✓ 

 
✓ 

  

Mobility as a 

Service 

(MaaS) 

Provide a plethora of digital 

services to manage transport 

systems. 

MaaS-

Global 

Whimp 

  

✓ ✓   ✓   ✓ ✓ ✓   ✓ ✓ ✓ 
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 Super-intermediaries’ value proposition is to allow individuals to hire transport services 

from owners of private vehicles. Contrary to P2P-Sharing models, super-intermediaries 

directly define the conditions of the contract and fully control the matching between users. 

Pricing in this model is designed to subsidize one group while charging a premium to the 

other group. The goal of such cross-subsidy scheme is to scale the size of subsidized users 

because they generate positive cross-group network effects. As a results users from the other 

side are willing to pay the premium in exchange for such benefit (Eisenmann et al., 2006).  

 This business model enable users to extract more value of their private assets, as drivers 

receive incentives to share them in exchange for a fee. The pricing and matching strategies 

inherent to this model allow drivers to generate additional income by monetizing their 

assets, potentially incentivizing them to invest in and acquire new ones. For passengers, 

these platforms offer benefits such as enhance security and  predictability (Markman et al., 

2021). However, there is not robust evidence to suggest that super-intermediaries provide 

low-cost trips. Despite this fact, the model creates socio-economic value by providing 

transport services to times and areas that traditional methods do not serve. 

 According to Jacobides et al. (2018), a platform ecosystem consists of an array of firms 

that offer seamless services connected to a central platform.25 The value proposition of this 

model is to actively manage the connection between peripheral services and the core 

network to create strong complementarities. The platform leverage these complementarities 

to attract more consumers amplifying cross-groups network effects. For example, they often 

bundle services to create synergies across different segments of the network.26  

 Similarly to super-intermediaries, platform ecosystems enhance the efficiency of private 

assets and may encourage investment in new ones. In addition, they create economic 

benefits to peripheral firms, allowing them to access the platform’s core network at a low 

cost. Passengers instead benefit by quickly accessing a wide range of complementary 

services through the platform. It is important to note that platform ecosystems can generate 

socio-economic value under certain conditions, such as improving the coordination of 

distributed means through the integration of related services. For example, Uber integrating 

e-scooter into its network could encourage multimodal behavior. 

 
25 Seamless services are peripheral services that are traditionally provided in a separate market, but they could 

belong to the same segment. For example, Uber providing delivery services or car rentals. 
26 For example, Uber offers complementary services such as Uber Cruises to navigate the Seine in a private 

Cruise. 
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 As previously discussed, Mobility as a Service (MaaS) integrates various transportation 

modes into a single application allowing travelers to search for and book multiple services 

at once. Therefore, the value proposition of MaaS is to provide a plethora of digital services 

to manage transport systems. Similar to ecosystems, MaaS requires a digital infrastructure 

capable of integrating multiple services, leveraging complementarities among them.  

 The key difference is that MaaS must actively manage network effects to maximize 

socio-economic benefits by offering customers the most convenient combination of 

transportation modes. However, the exact mechanisms through which MaaS can generate 

these network benefits are not yet fully understood, though both pricing and non-pricing 

strategies together may certainly play a crucial role. Another significant distinction from 

platform ecosystems is that MaaS must generate socio-economic values by responding to 

the general interest, such as reducing traffic congestion and lowering carbon emissions.  

 

4. Towards a new regulatory governance 

 

Digital mobility platforms aim at creating network effects engaging in these efforts to 

increase the number of actors, scaling-up the size of the platform triggering further network 

effects. For example, platforms set individual prices, arbitrage over suppliers, collect large 

amounts of data from consumers and suppliers, and determine the conditions of the 

agreement between actors. This in turn raises considerable economic and societal challenges 

for sectorial and economic regulators because these efforts are often not within the scope of 

their power.  

 Nonetheless, research on this direction if still limited. In this section we characterize how 

various actions from digital mobility platforms conduct to market failures due to negative 

externalities, market power, information asymmetry or  public goods. The main findings are 

summarized in Table 2.  

 Negative externalities. When the consumption of a good or service harms a third party 

is known as a negative externality.27 In the case of transportation, the most important 

negative externalities are related with traffic congestion and pollution. The problematic 

regarding digital mobility platforms relies on the change of users’ behavior in the presence 

of new alternatives. Due to cost-sharing schemes or to the possibility of earn extra income, 

 
27 The work by Pigou (2002) and Ronald Coase (1960) are probably the most iconic analyses on the topic of 

externalities. 
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digital mobility platforms makes car usage more efficient inducing car travel. Therefore, 

they might inadvertently increase congestion and carbon emissions by increasing the 

volume of cars on the streets or by inducing modal shift from cleaner alternatives (Olave et 

al., 2024).  

 Another concern is related to the use of public space. To manage this scarce resource, 

governments have traditionally organized transportation around stations with integrated car 

amenities. However, innovations in vehicle types, parking methods, and circulation modes 

may significantly diverge from this approach. Consequently, digital mobility platforms 

could lead a disorganized system, imposing substantial negative externalities on users, 

particularly when space is misused or when the infrastructure is incompatible.  

 A pertinent example is the introduction of free-floating modes like e-scooters. Issues such 

as improper parking, sidewalk obstructions, and fatal accidents illustrate some of these 

negative externalities. While better policies can help to effectively organize innovations, it 

us crucial to assess potential undesired effects that could lead to lower accessibility and 

higher congestion at transport hubs (see Chapter 4 for a detailed analysis). 

 Market power. To develop network effects, platforms must achieve scale, and the 

greater the scale, the more pronounced the network effect becomes. This positive feedback 

enable platforms to capture a significant portion of the market pulling away from their rivals, 

a phenomenon often referred to as tipping (Dubé et al., 2010). Moreover, platform 

ecosystems aims to generate strong complementarities across members to attract and retain 

consumers. Additionally, network effects may also raise barriers to entry as new companies 

may find difficulties attracting consumers from established networks (Katz & Shapiro, 

1992). 

 Although robust evidence of these effects in new mobility is scarce, it is clear that 

companies such as BlaBlaCar and Uber hold high market shares.28 There are some practical 

cases suggesting that new services represent a strongly competition to incumbents. See for 

example the case of Coach services and BlaBlaCar in Spain.29 

  

 
28 According to the mainstream media outlet CNN, Uber held approximately 74% of the market share in the 

United States in 2023, a significant lead over its competitor Lyft, which accounted for the remainder. This gap 

has widened over time, with Uber's market share standing at 62% in 2019, aligning with the predictions 

associated with the winner-takes-all effect. For details pleases visit 

https://edition.cnn.com/2023/03/29/tech/lyft-leadership-change/index.html (Accessed on 14th February 2024). 
29 In 2015, coach services suited BlaBlaCar in Spain for unfair competition. However, the Madrid Commercial 

Court dismissed the appeal because “Blablacar has not created a platform in order to provide a transportation 

service, but to put in contact individuals who want to make the same trip and share certain expenses… the 

activity is regulated by the Spanish Information Society Services and Electronic Commerce Act (SISSEC).” 

https://edition.cnn.com/2023/03/29/tech/lyft-leadership-change/index.html
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Table 2. Market failures from digital mobility platforms 

Failure Description 

Negative 

externalities 

Platforms that make car travel more attractive by reducing travel costs may 

inadvertently change users’ behavior, leading to negative outcomes such as: 

• Increased congestion, if they switch from mass transit, 

• Increased carbon emissions if they switch from cleaner alternatives. 

In the scarcity of space, innovations in vehicle types, parking methods, or circulation 

modes may impose significant negative externalities, especially when space is 

misused or the infrastructure is incompatible. 

Market power 

If digital mobility platforms concentrate large market shares, they may be tempted to 

exploit their dominant position, potentially harming social welfare. Two relevant 

cases include: 

• Predatory strategies to eliminate competition. 

• No benefit transfer to costumers. 

Business strategies aimed at building large ecosystems of complementary services 

increase market concentration and blur the boundaries of the relevant market. 

Information costs 

asymmetries 

Digital mobility platforms have access to large amounts of certain information at low 

or no cost, while the cost for users is considerably high. This asymmetry can lead 

to market failure if platforms manipulate the information for their own benefit. 

Public goods 

Digital mobility platforms may free-ride on transport infrastructure if there are no 

incentives to contribute. 

Even if these platforms increase mass transit ridership, their price does not internalize 

urban development. 

 

 The potential to tipping lead platforms to engage in aggressive practices exploiting their 

dominant position. One relevant case is predatory pricing. In other words, platforms set 

prices below cost or even zero to accumulate all demand eliminating competition. When 

prices are set below cost, competitors are unable to participate without making loss. 

Consequently, predatory pricing might harms future innovations.  

 Additionally, when companies hold a dominant position in the long run they might fail 

to share part of the benefits with costumers without the fear of losing them or to put aside 

the socio-economic value. Uber failing to improve drivers contractual agreements serves as 

an example. Another strategies could be the use data to lock-in consumers or to concentrate 

service provision in specific time/zones hindering universal accessibility. 

 To understand market dominance, one needs to define the relevant market to frame the 

boundaries of competition including products, geographic inference, and customers. 

However, the capacity of this platforms to integrate seamless services blurs the definition 

of the relevant market. Platforms Ecosystems quickly integrate numerous actors from 
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various sectors without clear definition of the products they offer.30 Moreover, Platform 

Ecosystems and MaaS may resemble "after markets" where the consumption of a primary 

product leads to the consumption of a secondary product. It is not clear whether both primary 

and secondary goods must be considered as a single or as a separate market.31 

 Overall, determining the relevant market in multi-sided platforms remains an ongoing 

debate within competition economics and law. Some advocate for defining each isolated 

side of the platform as a relevant market, while others propose considering all sides 

collectively as the relevant market. The question remains an open debate in the academic 

literature.32   

 Another key concern is related with the regulatory governance of MaaS.33 While 

integration holds the promise of enhancing coordination among participants, it also implies 

a structural transformation of the industry with transport providers and passengers 

interacting through the platform. This organization will empower the platform may leverage 

its position to set entry conditions potentially hindering future innovation. The ultimate goal 

of the platforms must be to allocate efficiency gains derived from improved coordination 

and broader network effects (Montero & Finger, 2021). Therefore, imposing neutrality 

obligations on MaaS need to be set to guarantee universal access and to ensure equitable 

treatment.  

 Information cost asymmetries. Unbalances in the cost to access information among 

participants can lead to market failures if the party with superior knowledge abuse his 

 
30 There are multiple examples of digital mobility platforms integrating other services. For instance, BlaBlaCar 

forged an agreement with the national railway company SNCF in 2019. BlaBlaCar also acquired Klaxit in 

2023 to provide intra-city carpooling services, particularly focused on home-to-work commutes. Similarly, 

Uber has diversified with offers such as Uber Pool, Jump, Uber Eats, Uber Moto, Uber Cruise, among others. 

It has also partnered with Lime to enable users to locate and unlock shared e-scooters and e-bikes directly 

through its platform. More recently, Uber Rent allows users to rent cars from companies like Avis, Budget, or 

Europcar. Uber also provides advance technological solution for delivery logistics with Uber Freight. 
31 The relevant market in could be systemic, encompassing both primary and secondary together, multiple 

markets, comprising separate goods, or dual markets, consisting of one market for the primary good and 

another for the secondary good. Guidance to define relevant markets in this context has been recently revised 

by the European Commission in the draft notice on the definition of relevant markets in November 2022. 
32 The European Commission's recent draft Notice on the definition of relevant markets, published in 

November 2022, suggests that a market in multi-sided platforms may be defined either as a whole or as 

separate markets, depending on the case. The Commission recommends defining separate markets where 

significant substitution occurs across the platform's sides. Key factors in assessing whether such conditions 

exist include product substitution, product differentiation, users' decisions, and the nature of the platform. 

Additionally, the draft acknowledges that zero-pricing is intrinsic to multi-sided platforms and does not 

preclude the existence of a relevant market. The draft was retrieved from https://competition-

policy.ec.europa.eu/public-consultations/2022-market-definition-notice_en on February 12th 2024. 
33 The literature on Mobility as a Service is extensive. Much of the research has primarily focused on 

identifying drivers and barriers for implementation (Audouin & Finger, 2018; Smith & Hensher, 2020; Smith 

et al., 2020; Van den Berg et al., 2022). Research to assess the impact of MaaS on key outcomes such as 

private car displacement and pollution is still limited. 
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position.34 Digital mobility platforms collect large amounts of data from all actors at low or 

no cost with the aim of generating strong network effects. Conversely, consumers do not 

have access to such information because it is considerably high or even impossible. 

 This lack information raises concerns if platforms manipulate such information for their 

own benefit. For example, the lack of information about pricing and matching algorithms 

may induce them to pay higher prices. The possibility of comparing other services could 

help to solve such imbalances. Another example is the use of such information to nudge 

consumers, i.e. to influence their decisions towards options that are beneficial for the 

platform. 

 Another practice involves offering environmentally-friendly options to attract more 

users. Some digital mobility platforms offer eco-friendly rides, while others position 

themselves as a green alternative. However, consumers often lack sufficient data to make 

informed decisions. This information imbalance is critical because it can make car travel 

more appealing, potentially diverting users away from cleaner modes of transportation 

(Olave et al., 2024). 

 Public goods. Good considered as public are non-excludable and non-rivals, i.e., they 

are accessible to everyone and its consumption by one person does not limit the consumption 

of others.35 The main problem related with these type of goods is the lack of private 

incentives to contribute to their production, resulting in their under-provision or 

degradation. 

 In the case of transportation, services are linked to the physical word through the 

construction of infrastructure and related amenities. Moreover, transport networks such as 

cycleways and roadways are considered as non-excludable. Mass-transit services also 

function under the principles of universal access. Consequently, private companies have no 

incentives to invest in infrastructure and it has been traditionally carried by the state through 

different sources of public contribution including traveler fares.  

 Yet, with the surge of digital mobility platforms displacing mass transit, the amount of 

fares collected from traditional players may significantly decreased pressuring the financing 

schemes for public investment (Finger et al., 2017). Additionally, digital mobility platforms 

free-ride on transport infrastructure and there no incentive in place for them to contribute. 

 
34 George Akerlof’s paper, The market of lemons (1970), is probably the best reference to study the effect of 

asymmetric information on markets. 
35 The seminal work by Paul A. Samuelson (1955; 1954) are considered the basis of the modern theory of 

public goods. 
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Even in scenarios where platforms increases mass-transit ridership, their price does not 

internalize the use of public infrastructure. Therefore, it becomes imperative to devise 

policies that promote synergies with mass-transit to ensure sustainable urban development. 

 

4.3. Policy implications 

 

Digital mobility platforms have revolutionized our daily routines by offering novel and 

convenient transportation options as alternatives to private cars. While some studies have 

highlighted the positive impacts of these innovations, there are also disruptions that could 

potentially undermine social welfare. These platforms aimed at creating strong positive 

network effects extracting some economic benefit. To accomplish their purpose, they may 

engage in aggressive practices that requires further attention. In this section, we discuss 

some regulatory policies that could help regulators to accompany the integration of digital 

mobility platforms, thereby mitigating the risk of undesired effects. 

 Digital mobility platforms have been introduced without regulation mainly due to a lack 

of knowledge about their practices and their capacity to quickly evolve and adapt to changes 

in the market. In this context, defining a more adaptive and flexible regulatory policy in a 

broader urban environment is key. Flexible rules can help authorities to quicky adapt to 

different business models and innovations. Rules issued to manage urban transportation 

such as codes of circulation and parking, typically fragmented by the number of transport 

modes, need to be revised to develop a multi-modal regulatory framework. This must be 

coupled with a more active use of data to systematically assess the effects of regulatory 

intervention to keep pace with technological innovation. Moreover, enabling 

experimentation might improve predictability and stimulate innovation. 

 Investing in transport infrastructure and leveling the regulatory playing field between 

platforms and incumbents are also key principles. Better management of the public space to 

integrate platforms with traditional services is essential to trigger complementarities and to 

improve accessibility with the aim of tackling travelers dilemmas. Moreover, certain 

regulatory advantages in favor of platforms such as tax exemptions, no contributions for 

infrastructure investment, and no-charges for the use of the space may result in an under 

provision of infrastructure. 

 It is also important to promote the use of platforms to complement mass transit. 

Promoting business models to govern transport systems is a promising policy. Care must be 



Page 32 

 

taken to define obligations for universal service and neutrality to achieve policy objectives 

such as reduce congestion and carbon emissions. Other policies such as integrated transport 

benefits that covers multimodal mobility must be promoted. 

 The value proposed by digital mobility platforms is data-driven, therefore, it is necessary 

to improve regulatory capacity to better evaluate the influence of digital platforms on the 

market. Defining robust statistical methodologies to provide scientific evidence on how the 

presence of digital platforms affects congestion and emissions is a promising strategy. These 

methodologies should consider the presence of the platforms in a multi-modal environment 

from an holistic perspective to better understand the mechanisms behind their influence on 

transport-related concerns.  

 Moreover, it is crucial to promote data-driven regulation and define data-sharing 

obligations for platforms. Analyzing real-time data provided by platforms allows continuous 

monitoring, improves predictability, and ensures an effective and rapid intervention from 

regulatory authorities. To this end, it is crucial to set adaptative rules for data requirements, 

build open data standards, develop applications to collect real-time data from platforms, and 

build regulatory capacity to be able to process big data for better policy design and 

regulatory enforcement. 

 Additionally, multi-sided markets may create asymmetries of information. Promoting 

multihoming and defining obligations to platforms to reveal relevant information increases 

consumers’ awareness and reduces platforms’ potential abuses. Finally, for business models 

providing access to networks, it is crucial to better understand the effects of service 

integration in the definition of the relevant market. How the provision of network services 

influence competition and deter entry is a relevant question. Also, it is crucial to better 

understand how the use of data in one segment of the market might be used to influence 

actors’ decisions over multiple segments. 

 

5. Conclusion  

 

Digital mobility platforms have been introduced because they hold potential to ease 

transport related concerns such as congestion and pollution. Contrary to traditional transport 

services, these platforms’ value proposition is based on the management of network effects. 

Moreover, the digital revolution has allowed these companies to reduce transaction costs at 

the extent of creating new market places. In this paper, we propose a typology of the various 
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business models following this logic. A better understanding of the value proposed by these 

companies help governments to adapt current regulatory policies to meet social, economic, 

and environmental objectives. 

 This analysis offers a typology of business models based on their approach to manage 

network effects. However, the literature on platform business models is still in its early 

stages, leaving many questions open for further research. A particularly important area of 

inquiry is how platforms define their business models and how these definitions evolve over 

time , which is crucial for understanding the rapid technological advancements within these 

companies. Another key question concerns the incentives for these companies to join a 

larger network. For example, it remains unclear whether larger platforms, which already 

generate strong network effects, would be willing to participate in a MaaS model.

 Platforms managing network effects aimed at growing in size to amplify such effects, at 

the expense of attracting demand from incumbents. This tipping effect generates positive 

feedbacks that could result in high market concentrations. Therefore, digital mobility 

platforms engage in aggressive practices to tip the market towards their own benefits. This 

in turn prompt discussions about the necessity of public intervention. The potential to 

tipping may induce platforms to engage in aggressive competition practices including 

predatory pricing and personalized services to lock-in consumers eliminating competition.  

 Other key concerns are related with negative externalities–leading to higher congestion 

and carbon emissions, information cost asymmetries–leading to abuses to consumers, and 

the provision of public goods–resulting in an under provision and degradation of public 

infrastructure. 

 We also discuss various policy implications derived from our analysis. In summary, it is 

essential to develop a more adaptive and flexible regulation following an holistic approach. 

Similarly, improve space management to integrate and promote platforms to trigger 

complementarities to mass transit is crucial to reduce car dependencies. Promote digital 

mobility platforms that aim at governing transport systems is a promising policy, but care 

must be taken to define obligations for universal service and neutrality. Finally, it is essential 

to improve regulatory capacity and develop data-driven regulation to better evaluate 

platforms’ practices and improve enforcement.  

 The evolution of regulatory policies must consider these conditions to fully unlock the 

potential benefits of technological progress. While societies benefit from such innovations, 

market concentration and coordination gaps may yield detrimental outcomes. Moreover, 

“these new solutions are disrupting the status quo and calling for the development of new 
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organizational approaches” (Finger & Audouin, 2019). Indeed, the evolution of the 

regulatory governance becomes crucial to develop efficient coordination mechanisms 

among different stakeholders. We must not forget that technological evolution alone without 

the proper policies is an utopian vision (Yeung & Lodge, 2019). Instead, we must develop 

robust regulatory governance to steer innovations to address issues of general interest.  

 The ingredients are served, it is up to us to pooled them in an efficient and coordinated 

manner, rather than simply scramble them hoping for the best. 
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Abstract 

Micromobility, particularly bike-sharing systems, have potential to ease environmental 

and social concerns by reducing car-dependencies and enhancing connectivity with 

public transport. However, the extent to which bike-sharing substitute public transport 

remains uncertain. This paper leverages an extemporaneous incident that disrupted 

Mexico City’s subway system to causally identify public transport substitution to bike-

sharing. By exploiting the spatial relationship between bike-sharing and subway stations, 

I characterize bike-sharing trips as substitutes or complements to public transport. The 

findings suggest a significant increase of public transport substitution to bike-sharing 

during disruptions. Furthermore, upon system restoration, the disruption is associated to 

a surge in bike-sharing ridership. Finally, this surge in ridership is related with an 

increase in the level of complementarity with public transport. These findings have crucial 

policy implications to design multimodal mobility systems resilient to disruptions capable 

of withstanding challenges related to the ecologic transition. 
Keywords: Sharing-mobility; Bike-sharing; Public transport substitution; Public transport 

disruption; Natural experiment. 

JEL classification: D90, L92, R4, R41, R42. 
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1. Introduction 

 

The car-oriented paradigm that dominated urban transport during the last fifty years arose 

environmental and social concerns such as traffic congestion, pollution, territorial 

inequalities, and adverse health outcomes. In consequence, cities are welcoming new 

mobility services with the aim of solving these transport-related concerns. The so-called 

sharing mobility might help cities in their endeavor inasmuch as it reduces car-dependency 

(ITF, 2021; Asensio et al., 2022), tackles first/last mile dilemmas (DeMaio, 2009; Lesh, 

2013; Shaheen & Chan, 2016), and improves accessibility (Shaheen & Cohen, 2019). In this 

regard, complementing public transport with new services is key to trigger multi-modal 

behavior stimulating non-car travel demand (Shaheen & Chan, 2016; Meng et al., 2020). 

Nevertheless, to what extend new mobility services substitute public transport is an open 

question in the literature which answer is key for the future organization of urban mobility. 

 I focus here on the station-based bike-sharing models which is a recent innovation that 

allows riders to borrow bikes from any dock and return them to any other dock near their 

destination. As any other shared mobility service, this mode enables users to have short term 

access to transport on an as-needed basis (Shaheen & Cohen, 2019). Furthermore, bike-

sharing is growing in popularity among governments due to their potential to overcome the 

so-called last-mile dilemma by improving connectivity to public transport enhancing 

multimodal behavior (Shaheen & Chan, 2016). Nevertheless, the question on whether bike-

sharing complements or substitutes public transport remains to be answered due to mixed 

results in empirical studies. Many have associated a larger public transport ridership due to 

the presence of bike-sharing, suggesting a complementary relationship (Ma et al., 2015; 

Ashraf et al., 2021; Radzimski & Dzięcielski, 2021). Others have found evidence of public 

transport substitution to bike-sharing, i.e., they have found evidence of a decrease in public 

transport ridership, especially in urban cores with high diversity of activities (Campbell et 

al., 2016; Campbell & Brakewood, 2017). Only a bunch of studies have explored the 

possibility of a dichotomic interaction where bike-sharing provides both: complementary 

and substitution journeys (Shaheen et al., 2011; Martin & Shaheen, 2014).  

 This paper provides empirical evidence in this regard by exploring an extemporaneous 

incident that shut down operations in Mexico City’s subway network on January 9th, 2021. 

The purpose of the analysis is threefold. First, it seeks to causally identify to what extent 
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bike-sharing substitutes or complements public transport by exploiting the spatial 

relationship between docking and subway stations. Second, it investigates the short and 

long-run effects of disruptions in the transport network on bike-sharing adoption. Third, it 

unravels whether an expansion in the adoption of bike-sharing displaces subway ridership. 

 The central hypothesis of this work is that docking stations highly integrated with public 

transport show a larger degree of substitution in comparison with stations outside the spatial 

coverage of the subway system. This is because commuters can fully substitute subway 

itineraries with bike-sharing when docking stations are located within the spatial coverage. 

In the case of disruptions in the system, those stations might help users to bridge disrupted 

connections in the network. Furthermore, disruptions might form habits among users 

towards cycling making intermodal journeys (bike-subway) more attractive affecting 

subway ridership in the long-run (Goodwin, 1977; Chen & Chao, 2011; Xin et al., 2019). 

 The Mexican context is particularly useful to assess the hypothesis. First, the 

extemporaneous variation in the supply of subway services allows a natural experimental 

setting to causally identify the impact of public transport disruption. Second, the bike-

sharing model in Mexico City is integrated with the urban mobility system with docking 

stations located within the spatial coverage of the subway system. Third, subway lines 

unaffected by the incident remained open along the whole period of study. These feature, 

along with the fact that only a fraction of docking stations are located nearby disrupted 

subway stations, allow me to identify fluctuations in the degree of complementarity between 

both modes as a result of the network disruptions. Fourth, the data available allows the 

comparison of three relevant scenarios: before, during, and after disruption, which enables 

the assessment of time-varying effects. Fifth, information about bike-sharing in Mexico City 

is open source. The datasets collected provide information of every bike journey in an 

origin-destination format including the geo-location of docking stations. Thus, studying the 

spatial integration of bike-sharing with public transport is feasible. As a matter of fact, I 

exploited this spatial relationship to identify first/last-mile and substitute bike journeys 

using a methodology similar to Fan & Zheng, (2020).  

 My findings suggest that public transport disruption is associated with an increase in the 

demand for bike-sharing. On average, the number of additional bike journeys associated 

with disruptions is about 3,600 per week. This amount is equivalent to 30.4% of the total 

number of bike-sharing journeys in a common day and 6.4% of the number of journeys in a 
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common week before disruption. Another interesting comparison is that the average number 

of additional trips each day after the incident is equivalent to 10.5% of the fleet-size (6,800 

bikes). Regarding the level of integration, the evidence suggests that the effects are larger 

among docking stations within the spatial coverage of the public transport network. Notably, 

a decrease of 100m in the planar distance between any docking station and the closest 

subway station is associated with an increase in the daily average number of trips of 9.8% 

per docking station. I also explore the extent to which the effects vary with the degree of 

substitution and complementarity between bike-sharing and public transport. Results 

suggest that the number of trips substituting public transport increased in the weeks of 

disruption while the number of journeys complementing public transport decreased. The 

estimations do not change regardless of the type of complementary trip, i.e., first or last-

mile connections. Overall, the evidence presented here suggests that commuters shifted 

towards bike-sharing to complete itineraries that, otherwise, could have been done using the 

subway network. In the same order of ideas, a lower degree of complementarity between 

both transport modes is reasonable due to a lower connectivity within the network. 

 Regarding the effects in the long-run, the estimates indicates that public transport 

disruption is associated with an overall increase of bike-sharing demand in the post-

disruption period. In fact, the dynamics between both transport modes changed when the 

subway reopened operations in comparison with the scenario before disruption. The 

evidence suggests a higher degree of complementarity for all types of journeys (firs-mile 

and last-mile) as well as a higher number of bike-sharing journeys substituting subway 

itineraries (but at a lower extend than the scenario during disruption). Overall, these findings 

suggest that disruptions in public transport influenced modal shift to bike-sharing in a 

persistent way. 

 One concern with the interpretation of these findings is whether the effects are the result 

of commuters shifting from public transport to bike-sharing. It is important to point out that 

higher degrees of complementarities between public transport and bike-sharing are suitable 

to unlock multimodal behavior tackling car dependencies. However, disruptions in the 

network might detonate undesired modal shifts. To ease the interpretation of the results, I 

studied the association of bike-sharing on subway ridership displacement associated with 

disruptions in the network. Again, I exploited the spatial relationship between both modes 

to link bike-sharing and subway ridership. My findings suggest that expanding the number 
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of bike-sharing journeys by 10% increases the inflow of subway passengers in integrated 

stations during disruption by 1.2%. Moreover, after the restoration of the system the positive 

associations is maintained, but the magnitude is reduced to 0.3%. 

 My findings are relevant for the public debate over the formation of multimodal transport 

systems. First, the evidence reveals that the relationship between bike-sharing and public 

transport is complex. A well-integrated bike-sharing system provides complementary 

journeys to public transit easing the first/last mile dilemma. In addition, it allows the 

substitution of some subway itineraries. What is more, this feature should not be considered 

as a detrimental factor because a certain degree of substitution is desirable to design resilient 

transport systems capable of facing disruptions. Thus, a well-integrated bike-sharing system 

serves to shield public transport from unexpected shocks. Second, cities could exploit the 

relevance of integrated docking stations to design a rebate system that promotes intermodal 

behavior.1 Third, more policies that allow users to experience bike-sharing is another 

alternative to promote multi-modal behavior. For example, providing a test period free-of-

charge might incentivize users to try the benefits of bike-sharing as an alternative to private 

cars. Finally, the evidence suggests that cycling infrastructure is key to improve the 

complementarities between bike-sharing and public transit. 

 The rest of the paper is organized as follows. Section 2 presents the related literature with 

a focus on the relationship between public transport and bike-sharing. Context about urban 

transportation in Mexico City and details on the incident that motivates this work are 

presented in Section 3. In Sections 4 and 5, I describe the data and the empirical strategy. 

Main results and robustness tests are reported in Sections 6 and 7.  In Section 8, I provide 

additional evidence about the impact of disruption on the dynamics between both transport 

modes. Section 9 outlines the discussion and concludes. 

 

2. Related literature 

 

The findings presented in this article add to a nascent literature on new mobility modes, 

notably to the literature of station-based bike-sharing services (see Teixeira, et al. (2021) for 

a compelling review). The empirical evidence available falls in three categories: adoption 

 
1 Rebates in bike-sharing models are a common tool to help operators to rebalance the distribution of bikes 

across the city. For instance, the Velib’ bike-sharing model in Paris offers “minutes bonus” to users who pick-

up bikes from overcrowded stations or drop-off bikes in empty stations. 
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and modal shift, bike-sharing impact on transport-related concerns, and synergies with other 

modes of transport. This paper contributes to the latter strand as it aims to address to what 

extent bike-sharing substitutes public transport. 

The evidence available so far shows mixed results. Some studies have found evidence 

of complementarities between both transport modes (Ma et al., 2015; Ashraf et al., 2021; 

Radzimski & Dzięcielski, 2021), others have found evidence of substitution (Campbell et 

al., 2016; Campbell & Brakewood, 2017), and a few have argued in favor of a dichotomic 

relationship, i.e., when bike-sharing complements and substitutes public transport (Shaheen 

et al., 2011; Martin & Shaheen, 2014). One of the very first studies exploring the dynamics 

between public transit and bike-sharing is the work by Martin & Shaheen (2014). Analyzing 

a survey data from Washington DC and Minneapolis and mapping geocoded home and work 

locations, the authors determine the conditions under which commuters shift towards and 

away from bus and rail using bike-sharing. They find that bike-sharing substitutes bus and 

rail transit in high density areas and complements it in suburban low-density areas, which, 

according to the authors, might be evidence of bike-sharing serving as a first/last-mile 

connection. In a subsequent work, Ma, et al. (2015) find a positive correlation between 

public transit and bike-sharing ridership after studying the Capital Bikeshare (CaBi) 

program in Washington, D.C. Moreover, the authors discuss to what extent the spatial 

integration between stations is a critical component to study dynamics between both modes 

of transport. They find that docking stations located close to subway stations produce more 

trips suggesting that public transport is an important feeder for bike-sharing. In contrast, 

Campbell & Brakewood (2017) are the first to causally identify a decrease in bus ridership 

associated with the introduction of bike-sharing in New York City. The authors exploit 

spatiotemporal differences in the construction of docking stations to estimate a difference-

in-difference design comparing bus routes affected by the construction of docking stations 

with those not affected by the program. However, most of the evidence available is limited 

to stated preferences, short time coverage, and it is restricted to US cities. The unique 

analysis providing causal estimates focuses on the impact of bus ridership. The evidence 

presented in this paper is, to the best of my knowledge, the first to exploit a natural 

experiment to study subway substitution to station-based bike-sharing. In addition, I use 

origin-destination data at journey level to reconcile the dichotomic relationship between 

both transport modes identifying fluctuations in both complementary and substitution 
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journeys. Furthermore, I study the evolution of the effects over time and discuss the role of 

habits for modal shift. 

 My methodology to distinguish complementary and substitution journeys is related to the 

paper by Fan & Zheng (2020). Estimating a difference-in-difference model, the authors find 

complementarities in the interaction between subway ridership and the intensity of use of 

dockless bike-sharing in Beijing. The authors collected data during two weeks after the 

introduction of the program in 2017. My paper differs in terms of the quasi-experimental 

design, the business model studied, and time coverage. I exploit as a natural experiment an 

extemporaneous shock in the provision of subway services to study the interaction between 

public transport and the station-based bike-sharing modes. Fan & Zheng (2020) instead, 

focus on dockless (or free-floating) bike-sharing services who exhibit different 

spatiotemporal patterns to those demonstrated by docked bike-share programs (McKenzie, 

2019).  

 This paper is also informative about commuters behavior during public transport 

disruptions, a strand that has a long tradition in transport economics (van Exel & Rietveld, 

2001; Zhu & Levinson, 2012; Anderson, 2014; Larcom et al., 2017); some recent research 

has focused on car-sharing (Tyndall, 2019) and carpooling (Yeung & Zhu, 2022). However, 

very few is known about the role of bike-sharing during network disturbances. Saberi, et al. 

(2018) conduct a spatial-temporal descriptive analysis to provide evidence of bike-sharing 

patterns before, during, and after the strike in the London Tube on July 8th – 10th, 2015. The 

authors find an increase in the number and duration of bike journeys during disruption. They 

also find a larger concentrations of highly used docking stations near the Tube and in 

London urban core. Younes, et al. (2019) study different rail transit closures in Washington, 

D.C. that happened between 2016 and 2017. The authors estimate an autoregressive Poisson 

time series model using journey level data to find that disruptions are associated with an 

increase in bike-sharing ridership in the vicinity of the affected subway stations. In addition, 

the authors discuss the possibility of bike-sharing as a first/last mile solution rather than as 

a substitute for public transit after inspecting the spatial distribution of journeys using a 

kernel density estimation. By analogy, I look at the impact of public transit disruption on 

bike-sharing ridership in an equivalent way. However, I provide robust empirical evidence 

estimating a quasi-experimental design exploiting an extemporaneous shock in public 

transport provision. 
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Finally, the results presented here provide evidence about public transit disruption 

management and the design of resilient transport networks (Zhu & Levinson, 2012; Zhang 

et al., 2021). Public transport disruptions are increasing in number due to the aging of 

subway systems around the world, forcing governments to find solutions to bridge 

disruptions using alternative transport modes. According to Zhang, et al., (2021), ride-

sharing services could help by providing additional capacity to public transport. However, 

the role of new mobility services in disruption management is largely unknown. This paper 

contributes to fill this gap in the literature by identifying the effects of disruptions on bike-

sharing journeys that served to replace subway itineraries. 

 

3. Case Study: Mexico City  

 

Mexico City has a consolidated public bike-sharing system called ECOBICI where users 

undocked and docked bicycles in different stations distributed within a predetermine 

geographic region in the city (see Figure 1). The system was introduced in 2010 with the 

aim of complementing public transport providing more alternatives to commute. In 2021, 

ECOBICI managed 480 docking stations and a fleet-size of almost 6,800 bicycles (340 are 

electric). The profile of users is highly educated (86% bachelor of higher) young (40% have 

25 to 35 years old) males (63%), as it is the case in other bike-sharing systems (SEMOVI, 

2020). In order to use a bike, citizens must subscribe to one of the following plans: annual 

(27 USD2), weekly (20 USD), three day (12 USD), or one day (6 USD). Users are allowed 

to ride for 45 minutes (additional minutes cost extra fees). In the case of annual plans, the 

price allows users to access a low-cost transport service with a cost per trip close to 0.1 

USD.3 To the date covered in this study, there are more than 170 thousand users registered. 

 It is noteworthy that the city announced, at the end of 2021, a plan to expand the system 

adding 207 stations and 2,300 bicycles. Even if such expansion plan goes beyond the scope 

of this paper, it is important to point out the relevance of ECOBICI in the urban plannings 

for the city. 

 

 

 
2 Exchange rate used 1 USD = 19.5 MXN.  
3 Equal to 27 USD over 270 working days in a year. 
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Figure 1. ECOBICI's docking stations and 

Mexico City’s subway system 

Figure 2. Disrupted lines after the fire on 

January 9th, 2021 

  
Note: The Figure reports the location of ECOBICIS’s 

docking stations (green dots) and their spatial relationship 

with Mexico City’s subway system (solid lines). The small 

square at the bottom shows the geographic coverage of 

ECOBICI. 

Note: The Figure reports the subway lines that stop 

operations after the fire in Mexico City’s subway 

headquarters on January 9th, 2021. Lines 4, 5, and 6, were 

restored 3 days after the incident. Lines 1, 3, and 2, 

reopened operations on January 25th, February 1st, and 

February 8th, 2021, respectively. 
  

 Mexico City’s backbone public transport is the subway network. It is formed by twelve 

lines connecting 195 stations and covering more than 226 km of tracks. The network serves 

more than 1.6 billion users annually (the second largest subway system in America after 

New York City). It is operated by Sistema de Transporte Colectivo (in Spanish), a public 

body decentralized from the local government. It is designed and managed in the basis of 

universality, therefore, the price per journey is relatively low (5 MXN, ≈0.25 USD) and no 

other pricing scheme exists.  

 A crucial point for this article is the dynamics between these two modes of transport. The 

survey conducted by ECOBICI in 2020 revealed that 45% of users complement their 

journey with the subway. Moreover, 11.9% would have completed the same itinerary in the 

absence of ECOBICI (SEMOVI, 2020).4 Regarding the spatial relationship, as noticed in 

Figure 1, ECOBICI’s stations are located within a specific region of the city interacting with 

seven subway lines (1 to 3, 7 to 9, and 12). Those lines account for almost 74% of the daily 

traffic. In fact, 13% (63) of docking stations are located within 200m to the closest subway 

station and almost 50% within 500m (238 stations). In addition, some stations are integrated 

 
4 Being walking the first option in both cases: 65.1% and 37.3% respectively. 
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to important transport hubs such as the connection of lines 1, 7 and 9 (e.g., the Tacubaya 

station). Both transport modes are not only physically integrated, but they are also accessible 

using the same payment mode. The city launched in 2019 the intermodal mobility card 

(Tarjeta de Movilidad Integrada) as a payment method for different transport modes 

including subway and bike-sharing. The card costs 0.25 USD and works as a debit card, i.e., 

users can recharge it using specific modules distributed along the public transport network 

(since 2022, it is possible to recharge it using a mobile application). Concerning bike-

sharing, such card allows users to unlock bicycles from stations.  

 

3.1  Fire in subway’s headquarters  

 

On January 9, 2021, a fire caused by a short circuit struck Mexico City’s subway 

headquarters shutting down operations in 6 out of 12 lines affecting 55% of the daily traffic 

(see Figure 2). Lines 4, 5, and 6 reopened operations only three days after the incident. 

However, lines 1, 3, and 2 where restored two (Jan 25th), three (Feb 1st), and four weeks 

(Feb 8th) later. As a result, the network remained disrupted for four consecutive weeks. 

 Mexico City’s subway network disruption is suitable to be exploited as a natural 

experiment for the following reasons. First, it was an extemporaneous and unforeseeable 

event preventing operators and users to systematically modify their behavior beforehand. 

Second, ECOBICI is integrated into the disrupted lines, notably lines 1, 2, and 3. 

Furthermore, those lines are in fact the most demanded in the network accounting for almost 

45% of daily traffic. Third, the network shut down partially, this in turn enables the 

possibility to study disruption effects on complementary bike journeys. Fourth, the network 

was disrupted for a sufficiently prolonged period (four consecutive weeks) to study the 

persistence of the effects over time and the formation of habits. 

 

4. Data and descriptive statistics 

 

To assess the disruption effects at hand, I created an original dataset combining diverse 

sources of information. First, I collected journey level data in an origin-destination format, 

which is publicly available from ECOBICI’s website. The dataset includes, among other 

variables, docking stations’ identifiers for the origin and destination, starting, and ending 

time, the type of station (e-bikes vs standard), zip code, and rider’s age and gender. Second, 
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I requested the geolocation of docking stations from the operator’s API. Third, the total 

capacity, i.e., the total number of docks per station, was retrieved from ECOBICI’s web 

application. Fourth, regarding subway data, I collected stations’ geolocation as well as daily 

ridership at station level from the city’s open data portal. Finally, this study also includes 

geo-data for biking infrastructure in the city, obtained again from the open data portal. 

The period of study comprises the events between October 2020 and April 2021, i.e., 

before, during, and after the subway disruption.5 It is worth mentioning that winter holidays 

in Mexico, during the period of study, started on December 21st, 2020, and ended on January 

8th, 2021. Notice that, the day of the incident (January 9th, 2021) was the first Saturday after 

holidays. Therefore, I have dropped all the journeys during holidays. Consequently, the 

before-disruption scenario includes eleven weeks before December 21st, 2020, the during-

disruption scenario starts on January 11th, 2021, and includes the next four weeks, and the 

after-disruption scenario considers the rest of the available weeks. This approach was taken 

to avoid confounding factors related with the end of school holidays. On the other hand, this 

strategy could threaten the empirical findings if riders use holidays to form habits, which I 

believe is implausible because people use bike during holidays mainly for ludic purposes. 

Nevertheless, I provided a robustness test to account for this caveat in section 7. Please 

referred to Figure 3 to see other holidays and days off in the time spam also dropped from 

the sample.  

I winsorized the data using the distribution of journeys duration, inferred from the time 

at origin and destination, dropping the shortest and longest trips (0.5% of each extreme). 

This is because journeys lasting just a few seconds or more than two hours are not credible 

and might be considered as measurement errors. Furthermore, after analyzing travel patterns 

within any typical day, I dropped weekends and holidays. As noticed in Figure 4 and Figure 

5, the intraday distribution of the number of trips is considerably different between working 

and nonworking days. As noticed, the travel pattern in a typical working day is characterized 

by two peak hours that coincides with entry to work (or school) and back-home time 

(≈9:00am and ≈19:00pm) and a third peak that coincides with lunch time in Mexico 

 
5 As expected, Covid-19 had an important effect on the transport system in the city. The second quarter of 

2020 reported a bike-sharing ridership close to 20% of the total ridership in the same quarter of 2019, the 

lowest value observed during the crisis (see Figure A-2 for details). A similar behavior was observed in public 

transit ridership. The Figure by 2021 showed the first signs of recovery. By the second quarter of the year, 

bike-sharing and subway ridership were close to 45% of the levels observed in 2019-Q2. What is more, both 

systems have shown similar patterns.  



 

Page 49 

 

(≈15:00pm). In contrast, the volume of bike journeys during nonworking days is single peak 

around lunch time. 

 

 

Figure 3. Daily average of bike journeys over time 

 
Note: The Figure reports the daily average of bike-sharing journeys each week since October 1st, 2020. Solid vertical line 

(in blue) shows the first week after the subway disruption on January 9th, 2021. Dashed lines show the progress restoring 

the network. Dark shaded regions show school vacations in Mexico due Christmas and the Holy Week. Light shaded 

regions indicate weeks with at least one day off. 

 

Figure 4. Characteristic travel pattern of a 

working day 

Figure 5. Characteristic travel pattern 

during holidays and weekends 

  
Note: The Figure reports the travel patterns of December 

8th, 2020. This date was chosen to represent travel 

behavior during working days. It shows the density in the 

number of journeys by hour. 

Note: The Figure reports the travel patterns of December 

21st, 2020. This date was chosen to represent travel 

behavior during nonworking days. It shows the density in 

the number of journeys by hour. 
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Afterwards, I have constructed two balanced panel data at the level of docking stations 

observed every week. The main difference between each other is the subject of study. The 

origin-station data base use characteristics of the docking station at the origin while the 

destination-station data exploits characteristics of the docking station used to complete the 

journey. Making this difference is relevant to dig deeper in the market dynamics between 

bike sharing and public transport. In a nutshell, bike sharing complement public transport 

connecting people to the service while substitution arise when bike is used to complete a 

similar subway itinerary.  

The definitive samples are similar in many characteristics by construction such as the 

number of observations, contains close to 1.2 thousand observations for 480 stations and 25 

weeks (11 before, 4 during, and 9 after disruption). The main outcome of interest is the 

number of bike journeys by docking station scaled by the number of working days in the 

week. During the period of study, on average 24.5 daily journeys were produced by docking 

station. In other words, almost 58,800 bike journeys were completed every week in the city. 

The evolution of bike journeys over time is shown in Figure 6 (a), dots represent the 

daily average of bike journeys and shaded region represents the weeks during which the 

system remained disrupted. As noticed, the number of bike journeys during public transport 

disruption showed a clear change in the tendency increasing week after week. Moreover, 

the curve keeps its positive tendency even in weeks after the disruption. In addition to this 

Figure, a map with the daily average of the number of bike journeys by docking station is 

provided in Figure 7. As expected, there is heterogeneity in the intensity of use across 

stations represented in the Figure by the size of the circles. What is more, it is common to 

observe larger circles close to subway stations which is indicative of the importance of the 

level of spatial integration between both modes. As mentioned above, this stylized fact goes 

in line with previous studies (Ma et al., 2015; Ma et al., 2018; Ashraf et al., 2021). 

This paper sheds light on the dichotomic market dynamics between bike-sharing and 

public transport. To this purpose, I classified journeys making use of the geo-location 

information of the origin and destination docking station in the following way: 

• Substitute. Bike journeys substituting subway trips are those that start and end within 

the spatial coverage of the subway. In other words, these types of itineraries could 

have been completed using the network. 
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• First/Last-mile trips. In this case, bike-sharing is complementing public transport by 

creating first/last-mile connections. Following the commuters dilemma stablished 

by Lesh (Innovative concepts in first-last mile connections to public transportation, 

2013), a first-mile connection is defined here as a bike journey that starts beyond 

subway’s spatial coverage and ends in a docking station near the subway. 

Consequently, a last-mile bike journey starts nearby subway stations and ends in 

uncovered areas. 

• Complement. Bike-sharing can also serve to expand transport coverage, which is the 

case when journeys do not start or end within the spatial coverage of the subway 

system. 

 I used thresholds to define the subway’s spatial coverage. Following Fan & Zheng 

(Dockless bike sharing alleviates road congestion by complementing subway travel: 

Evidence from Beijing, 2020), stations located closer to 300m (in planar distance) were 

considered to be within the spatial coverage of the subway system. On the other hand, 

stations located beyond 300m were considered as outside the range of public transport. The 

outcome of interest in these cases measures the daily average number of trips that falls in 

each one of the categories above. 
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Figure 6. Evolution in the number of bike journeys by type 

(a) Total bike-sharing journeys (b) Substitute 

  
(c) First-mile (d) Last-mile 

  
(e) Complement 

 
Note: The Figure reports the weekly average number of bike journeys in total and by type (in dots). Shaded region 

represents the weeks of subway disruption. Figure (a) pooled all the bike journeys together. Figure (b) is exclusive for 

substitute journeys defined as trips that start and end within the spatial coverage (300m) of the subway network. Figures 

(c) and (d) include first and last-mile journeys defined as trips that start/end beyond/within the spatial coverage (300m) 

of the subway and ends/starts within/beyond. Figure (e) refers to as complementary journeys, i.e., bike trips that does 

not start nor end within the spatial coverage of the subway system. 
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Figure 6 (b)-(e) reports the evolution of such outcomes during the period of study. Dots 

again represent the daily average, and the shaded region represents the weeks during which 

the system remained disrupted. As expected, the number of trips substituting public 

transport increased during disruption suggesting that riders used bike-sharing to bridge 

disrupted connections within the public transport network. In addition, first/last-mile 

journeys decreased significantly the first week of the disruption showing a constant recovery 

thereafter. This behavior could be explained by the fact that riders shift to private cars 

avoiding intermodal journeys or prefer to stay home when public transport is disrupted (Zhu 

& Levinson, 2012). However, the descriptive evidence suggests that such behavior changed 

in the following weeks, which might indicate that commuters considered bike-sharing as a 

viable alternative. A similar, and unexpected, behavior is observed for complementary 

journeys. One potential explanation for this is that the number of bikes available to make 

this kind of trips decreases because riders were using the system to bridge subway’s 

disruption. Another intuition is that riders might have decided not to ride if they expected 

more congested and disturbed roads. Finally, it is relevant to point out that these Figures 

show evidence of an expansion of bike-sharing demand after the disruption, especially for 

complementary journeys of every kind. This in turn might indicate that public transport 

disruption had a long-lasting impact on modal shift to bike-sharing. 

Other relevant variables for the analysis are the following. On average, the planar 

distance separating bike and subway’s stations is about 590 meters. As mentioned, such 

distance is key to explain the spatial integration between both transport modes. An 

additional time-invariant characteristic of each docking station is their total capacity (26 

docks on average). Including this variable is important specially when there are spatial 

heterogeneities among stations, i.e., when docking stations closer to the subway are also 

bigger in terms of the number of docks. I also control for the type of bicycle (electric vs 

standard). On average, only 5.8% of the stations in the city are electric. Moreover, cycling 

infrastructure has been found to be determinant of bike ridership. In this study, I followed a 

spatial approach estimating the planar distance to the closest cycleway (171 meters on 

average). Finally, it has been documented that the availability of bikes and/or of empty slots 

at destination might influence users’ decisions to uptake the service. Nonetheless, this 

condition might be attenuated in areas with a larger density of docking stations. For instance, 

in the case where there are not available slots at destination, riders could find another station 
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nearby. On the other hand, isolated (and congested) stations could increase travel time to a 

point of discouraging riders. Therefore, I have included the density measured as the number 

of docking stations within a radius of 300m (the average value is 2.9). 

 

Figure 7. Number of bike journeys by docking station 

 
Note: The Figure reports the geographical distribution in the daily average of 

bike journeys by docking station. Circles size represents the intensity of use 

of each docking station relative to the rest. Solid black lines and dots denote 

the location of subway lines and stations. 

 

 

5. Empirical strategy 

 

To examine changes in the demand for bike-sharing during disruptions relative to the level 

of integration with the network, I estimated the differences in the relationship between bike-

sharing journeys and the distance to the closer subway station before, during, and after the 

disruption in the following way: 

 

𝑦𝑖,𝑡 = 𝛾1𝑑𝑢𝑟𝑖𝑛𝑔𝑡 + 𝛾2𝑎𝑓𝑡𝑒𝑟𝑡 +  𝛽1(𝑑𝑖 × 𝑑𝑢𝑟𝑖𝑛𝑔𝑡) + 𝛽2(𝑑𝑖 × 𝑎𝑓𝑡𝑒𝑟𝑡) + 𝑥𝑖,𝑡
′ Γ + 𝜇𝑖,𝑡 (1) 

 

where subindexes 𝑖 and 𝑡 stand for docking station and weeks since disruption. The outcome 

𝑦𝑖,𝑡 measures the number of bike journey staring (in the origin-station dataset) or ending (in 
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the destination-station dataset) in a logarithmic scale. The dummy variable 𝑑𝑢𝑟𝑖𝑛𝑔𝑡 denotes 

the disruption treatment and take the value of one every week the system remained 

disrupted, 𝑎𝑓𝑡𝑒𝑟𝑡 is an indicator equal to one to every week after disruption. The vector 𝑥𝑖,𝑡
′  

includes time and docking station fixed effects, square time trends of ridership per docking 

station as well as the covariates 𝑑𝑖. In addition, 𝑥𝑖,𝑡
′  includes a set of controls: an indicator 

for e-bikes stations, capacity, distance to the closest cycleway, and density of docking 

stations. Also, 𝜇𝑖,𝑡 is the error term. The covariate 𝑑𝑖 is a measure of the level of spatial 

integration between both transport modes. In the origin-station dataset, 𝑑𝑖 is the inverse of 

the distance between the docking station at the origin and the closest subway station. In a 

complementary way, 𝑑𝑖 refers to as the inverse of the distance within stations using the 

docking station at destination in the destination-station dataset. This procedure represents a 

first attempt to differentiate the effect depending on the type of bike journey (first or last-

mile). 

 I estimated equation (1) using OLS applying cluster standard errors at docking station 

level. The estimates of 𝛽1 and 𝛽2 measure the disruption effects conditional on the spatial 

interaction between transport modes. Positive estimates are expected meaning that 

increasing the spatial integration between both transport modes is associated with larger 

bike-sharing rides during and after public transport disruption. 

  I detected the following menaces to the identification strategy. The first one relies on the 

city’s response to manage disruption. For instance, if the city systematically relocates 

bicycles to support public transport, then the estimates would confound disruption effect 

with the operator’ strategic behavior. To this regard, the corresponding authority published 

a daily report containing all the strategies the city implemented to manage the situation. Due 

to the size of disruption the city bridged the network by increasing the capacity and coverage 

of other modes of transport such as bus, bus rapid transit, and trolleybuses. What is more, 

no action was taken regarding the deployment and rebalancing of bicycles across stations. 

Second, the city offered a special six-month plan for 6 USD fee (instead of the annual plan 

at 27 USD) for new users subscribed between January 12th and January 31st. To isolate the 

potential influence of this subsidy I have controlled by the weekly number of new 

subscriptions. Third, one could argue that the limited capacity of docking stations might 

undermine the true effect if riders cannot find a bike at the origin or an empty dock at 

destination. Unfortunately, the dataset does not observe the number of bikes and docks 
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available in stations at the origin and destination of each journey. Therefore, the results 

might only reflect a lower bound of the true effect. Nevertheless, in order to control for this 

potential bias, I used station’s total capacity (i.e., the number of docks) and the density of 

additional docking stations within a radius of 300m. Finally, the underlying heterogeneity 

cause by variations in the weather was capture including time fixed effects. 

 In addition to the previous approach, I dig deeper on the effects depending on the market 

dynamics between both transport modes. As mentioned above, I classified each journey as 

substitute, complement, first-mile or last-mile depending on the spatial relationship of 

docking stations at origin or destination and the public transport network. Furthermore, 

thresholds on the distance between both stations were used to define the spatial interaction. 

Consequently, to measure changes in the complementarity and substitutability to bike-

sharing during and after disruption, I estimated equation (1) using as outcomes the logarithm 

of the daily number of each type of journey by docking station. In addition, I dropped the 

covariate 𝑑𝑖 because it is embodied in the definition of each outcome, and it does not provide 

any additional information for the estimation. The relevant coefficient in this case are the 

estimates of 𝛾1 and 𝛾2. They compare fluctuations in the number of bike-journeys by type 

during and after disruption with the scenario before the incident. 

 In addition to the estimates by period of event, I implement an analysis by week to study 

the time-varying effects. Instead of the 𝑑𝑢𝑟𝑖𝑛𝑔𝑡 and 𝑎𝑓𝑡𝑒𝑟𝑖 dummies used in equation (1), 

I include week dummies as follows: 

 

𝑦𝑖,𝑡 = ∑ 𝛽𝑞𝑑𝑖 × 𝑤𝑒𝑒𝑘𝑞

13

𝑞= −11
+ 𝑥𝑖,𝑡

′ 𝛤 + 𝜖𝑖,𝑡 (2) 

 

Where 𝑞 identifies the number of weeks elapse relative to the subway disruption (𝑞 = 0). 

The vector 𝑥𝑖,𝑡
′  still includes docking station fixed effects, trends, the covariate 𝑑𝑖 as well as 

a set of controls. Again, when the outcome is computed as the number of trips by type of 

bike journey, the covariate 𝑑𝑖 is excluded. This strategy allows to visually inspect the 

estimates of 𝛽𝑞 as a function of time. I dummy out the indicator of one week before 

disruption to measure the effects with respect to this indicator. I used week 𝑞 = −2 for the 

purpose of exposition. Results are not sensible to the selection of this indicator. 
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6. Results 

 

6.1  Effects on bike-sharing adoption 

 

The results of estimating equation (1) using the logarithm of the daily number of bike 

journeys as the outcome of interest are reported in Table 1. Columns (1)-(2) report disruption 

effects from the origin-station dataset that measures the inverse of the distance between the 

origin docking station and the closest subway station. Controls and fixed effects are included 

in both columns, however, only column (2) considers the square time trend of the outcome. 

Columns (3)-(4) repeat the analysis using the destination-station dataset to consider the 

inverse of the distance between the docking station at the destination and the closest subway 

station. Due to the fact that the outcome variable is log-transformed, the exponential of the 

estimates measures the percentage change in the daily number bike journeys by docking 

station of increasing the spatial integration to public transport network.6 The marginal 

effects suggest that increasing the inverse of the distance between docking and subway 

stations by one unit increases by 3.5% the daily average of bike trips in both origin and 

destination stations during disruption. On the other hand, being closer to the public transport 

network is associated with a slight increase of 0.5%-1.0% in the number of bike journeys 

after disruption. Note that estimates are statistically different from zero almost everywhere. 

Moreover, the results are robust to the inclusion of the square trend time. 

 To ease the interpretation of the results in terms of the number bike journeys, I used the 

estimates from columns (2) and (4) from Table 1 to fit the daily number of journeys by 

docking station. The Table 2 shows the averages from the predicted values and prediction 

intervals by period (before, during, and after disruption) for groups of docking stations 

depending on their distance to the subway for both datasets, origin (Panel A) and destination 

(Panel B). As a mode of comparison, six additional groups are shown: docking stations 

within 100, 200, and 500m as well as beyond 1, 1.2, and 1.5km from the subway spatial 

coverage. As noticed from the Table, disruption is associated with a decreased of two daily 

 
6 By definition, the spatial integration decreases with the distance. Using the inverse of the distance between 

stations is a good measure of the spatial integration: the smaller the distance the larger its inverse reflecting a 

higher spatial integration. 
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bike journeys by station in both panels which is equivalent to a percentage decrease of -

8.5%. 

 The result is not striking, as a matter of fact, the literature of commuters’ behavior during 

disruption have largely documented that a fraction of citizens responds by staying home or 

shifting towards private cars (Zhu & Levinson, 2012; Zhang et al., 2021), which might 

explain the reduction in the total number of journeys. However, in line with the marginal 

effect, the reduction is heterogenous across groups decreasing in magnitude for those 

stations close to the subway. Docking stations at the origin located within 100m have a 

percentage increase of 2% in contrast to a decrease of -10% for docking stations located 

beyond 1.2km. Similarly, for stations at destination within the same range, the number of 

journeys increased by 3.3% while a decreased of -9.8% is found for distances beyond 1.2km. 

The panorama after disruption is also revealing. The number of journeys in both cases 

increased by 10.5% in comparison with the scenario before disruption. This amount is 

equivalent to 1.2 thousand journeys every day (almost 17.6% of the total fleet-size). 

Furthermore, stations in the close vicinity of the subway (<100m) produced between 18.7 

and 22.2 more daily journeys than those beyond 1km. Moreover, these stations showed an 

increased in the number of journeys of about 13%-16% with respect to the scenario before 

disruption. I have also tested the null hypothesis of both 𝑎𝑓𝑡𝑒𝑟𝑡 and 𝑑𝑖 × 𝑎𝑓𝑡𝑒𝑟𝑡 jointly 

equal to zero, which is important for the validity and interpretation of the Table. The null 

hypothesis was rejected with a p-value lower than 0.001 in both cases suggesting that the 

number of bike journeys after the disruption was larger than the scenario before disruption. 
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Table 1. Public transport disruption effects on bike-sharing adoption 
 Dependent variable: 

 ln(Bike journeys) 
 Origin-station Destination-station 
 (1) (2) (3) (4) 

During*Distance 0.063 0.035*** 0.055*** 0.029*** 

 (0.006) (0.005) (0.009) (0.006) 

After*Distance 0.029 0.010*** 0.024*** 0.006** 

 (0.007) (0.002) (0.005) (0.002) 

During -0.040** -0.007 -0.040** -0.001 

 (0.018) (0.014) (0.017) (0.013) 

After 0.102*** -0.126*** 0.091*** -0.122*** 

 (0.023) (0.021) (0.023) (0.021) 

Distance -2.822*** 0.377*** -2.303*** 0.248*** 

 (0.020) (0.050) (0.020) (0.039) 

Capacity -0.059*** 0.002** -0.066*** 0.001 

 (0.0004) (0.001) (0.0004) (0.001) 

E-station -2.987*** 0.152*** -3.150*** 0.053 

 (0.004) (0.051) (0.004) (0.050) 

Distance to cycleway -0.005*** 0.0003*** -0.005*** 0.0002** 

 (0.00001) (0.0001) (0.00001) (0.0001) 

Density -0.961*** 0.023 -0.987*** 0.009 

 (0.003) (0.016) (0.003) (0.016) 

Subscriptions 0.003*** 0.006*** 0.003*** 0.006*** 

 (0.001) (0.001) (0.001) (0.001) 

Constant 8.093*** -0.826*** 8.317*** -0.634*** 

 (0.038) (0.149) (0.037) (0.140) 

Stations FE Yes Yes Yes Yes 

Week FE Yes Yes Yes Yes 

Stations' trend No Yes No Yes 

Observations 11,749 11,749 11,750 11,750 

R2 0.910 0.932 0.928 0.951 

Adjusted R2 0.906 0.929 0.925 0.949 

Note: The Table reports the estimated impact of public transport disruption on bike-sharing adoption. Rows 

2 and 4 show the estimates of β1 and β2 from equation (1), respectively. Columns (1) and (2) restrict the 

analysis to the origin-station dataset. Columns (2) and (3) restrict the analysis to the destination-station 

dataset. Distance refers to the inverse of the planar distance between subway and docking stations. Controls 

include e-bikes stations, station total capacity, distance to the closest cycleway, the number of docking 

stations in a radius of 300m (Density), and the number of new subscriptions. Stations’ trend control for the 

quadratic approximation of outcome’s trend. Cluster standard errors per docking station were applied. 

Significance levels are represented as follows: *p<0.1; **p<0.05; ***p<0.01.  
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Table 2. Daily bike journeys associated with public transport disruption by docking station 

Group Before During After 
Differences 

During-Before After-Before 

 (1) (2) (3) (4) (5) 

Panel A: Docking stations at origin 

Pooled 
23.6  

(16.2, 34.5) 

21.7  

(14.9, 31.6) 

26  

(17.9, 38) 
-1.9 2.4 

By distance      

< 100m 
32.8  

(22.5, 47.9) 

33.5  

(22.9, 49) 

37.2  

(25.5, 54.3) 
0.7 4.4 

< 200m 
32.1  

(22, 46.8) 

30.4  

(20.8, 44.3) 

34.4  

(23.6, 50.1) 
-1.7 2.3 

< 500m 
25.6  

(17.6, 37.3) 

23.8  

(16.3, 34.6) 

28.0  

(19.2, 40.8) 
-1.8 2.4 

> 1km 
16.3  

(11.2, 23.8) 

14.8  

(10.1, 21.5) 

18.5  

(12.7, 26.9) 
-1.5 2.2 

> 1.2km 
13.6  

(9.3, 19.8) 

12.4  

(8.5, 18.1) 

15.6  

(10.7, 22.7) 
-1.2 2.0 

> 1.5km 
12.0  

(8.3, 17.5) 

10.9  

(7.5, 15.9) 

13.8  

(9.4, 20) 
-1.1 1.8 

Panel B: Docking station at destination 

Pooled 
23.6  

(16.9, 33.2) 

21.8  

(15.5, 30.5) 

26.1  

(18.6, 36.6) 
-1.8 2.5 

By distance      

< 100m 
33.6  

(24, 47.2) 

34.7  

(24.7, 48.8) 

39.0  

(27.8, 54.7) 
1.1 5.4 

< 200m 
32.4  

(23.1, 45.5) 

30.9  

(22, 43.4) 

35.3  

(25.2, 49.5) 
-1.5 2.9 

< 500m 
25.9 

 (18.5, 36.3) 

24.1  

(17.2, 33.8) 

28.5  

(20.3, 40) 
-1.8 2.6 

> 1km 
15.2  

(10.8, 21.3) 

13.7  

(9.7, 19.2) 

16.8  

(12, 23.5) 
-1.5 1.6 

> 1.2km 
12.2  

(8.7, 17) 

11  

(7.9, 15.5) 

13.4  

(9.5, 18.8) 
-1.2 1.2 

> 1.5km 
9.2  

(6.6, 13) 

8.2 

(5.9, 11.5) 

9.7  

(6.9, 13.5) 
-1.0 0.5 

Note: The Table reports the daily average number of trips by docking stations before; during, and after public transport 

disruption (columns) conditional on the distance to the closest subway station (rows). It also reports the difference between 

the scenario during and before as well as the scenario after and before disruption. The values are computed from the fitted 

approximations of estimating equation (1). In other words, the values reported here are averages from the predicted values 

using the results shown in Table 1. The predicted interval at 95% confidence level is reported in parenthesis. Panel A refers 

to the estimates using the origin-station dataset only. Panel B refers to the estimates using the destination-station dataset 

only. Pooled includes all docking stations. 
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 To show evidence of the evolution of the effects over time, Figure 8 displays the time 

dummies estimates (𝛽𝑞) from equation (2). Zero in the x-axis represents the first week of 

disruption, the rest means the number of weeks elapsed since the incident. Solid red vertical 

lines indicate the week the disruption started and the week the system was fully restored. 

The gray region characterizes an interval confidence at 95% level around estimates. A dotted 

line was included instead of the dummy intentionally left out. Each one of the two sub-

figures (a) and (b) presents respectively docking stations at origin and destination. It is 

important to remember at this point that positive estimates represent an increase in the 

number of bike journeys when the spatial integration between both transport systems also 

increases. 

 

Figure 8. Persistence of the effects over time by type of docking station 

(a) Origin docking stations (b) Destination docking stations 

  
Note: The Figure reports the weekly dummy (𝛽𝑞) estimates from equation (2). X-axis represents the number of weeks 

elapsed since the fire on January 9th, 2021. Therefore, the first week of disruption is in zero. Solid vertical lines indicate 

the week when disruption started and the week when the system was fully restored. Shaded regions denote an interval 

confidence at 95% level around estimates. The dotted line was included instead of the dummy intentionally left out 

from the regression. Figure (a) shows the effects from the origin-station dataset only. Figure (b) shows the effects from 

the destination-station dataset only. 
 

 The results are in line with what I described in the previous section, but the evolution 

week by week reveals additional information. For instance, note the spike in the magnitude 

of the coefficients during disruption suggesting an increase in bike-sharing demand in that 

period. In contrast, the pattern shows a decline in magnitude once the network is fully 

restored. What is more, the visual inspection suggests a change in the negative tendency 

shown in the weeks before disruption, especially for docking stations at destination. As 

noticed, these estimates represent changes in the daily number of bike journeys by docking 

stations conditional on their spatial integration to the network, which difficult the 
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interpretation in terms of the total number of bike journeys. Therefore, to ease the 

interpretation, I compute the evolution in the daily average of bike journeys by docking 

station using the predicted values and intervals from equation (2). Figure 9 (a) and (b) report 

the results. The dotted blue line shows the average daily number of bike journeys before 

disruption. As noticed, the network disruption generated an abrupt decrease in bike-sharing 

demand (see Table 2 for details). Nevertheless, the negative tendency is immediately 

reverted and maintained along the rest of the weeks. The evidence suggests an expansion of 

bike-sharing demand associated with the disruption in the transport network. 

 

Figure 9. Predicted number of trips over time by type of docking station 

(a) Origin docking stations (b) Destination docking stations 

  
Note: The Figure reports evolution in the daily average of bike journeys by docking station using the predicted values and 

intervals from equation (2). The dotted line (in light blue) shows the average before disruption. X-axis represents the 

number of weeks elapsed since the fire on January 9th, 2021. Therefore, the first week of disruption is in zero. Solid vertical 

lines indicate the week when disruption started and the week when the system was fully restored. Shaded regions denote 

an interval confidence at 95% level around the estimates. Figure (a) shows the estimates from the origin-station dataset 

only. Figure (b) shows the estimates from the destination-station dataset only.  

 

6.2  Dichotomous effects 

 

What I find in the previous section suggests that public transport disruption is associated 

with an increase in bike-sharing adoption, especially from docking stations nearby the 

subway system. However, it is not clear whether those journeys were used to substitute or 

to complement public transport. Table 3 reports the estimates of equation (1) for the 

outcomes that identify the number of bike journeys in each category: substitutes, 

complements, first-mile, and last-mile. It is important to point out that I exclude the 

covariate 𝑑𝑖 in this case because it is used to classify each bike journey. It is noteworthy that 

some stations might not originate (or receive) specific types. For instance, no station beyond 
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300m can originate a substitute journey nor receive a first-mile journey by construction. 

Therefore, the number of observations is restricted accordingly. Docking stations, time fixed 

effects, and controls are included in every column. Panel A and B differs on the inclusion 

of square time trends in the number of total journeys by docking station. Moreover, columns 

(1) to (4) reports the results for docking stations at origin while columns (5) to (8) use 

stations at destination. 

 

Table 3. Disruption effects by type of journey 

 Dependent variable: 

 Origin-station Destination-station 

 Substitutes Complements First-mile Last-mile Substitutes Complements First-mile Last-mile 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Panel A: No time trend included 

During 0.051 -0.094** -0.065 -0.037 0.093 -0.097** -0.062 -0.085 
 (0.079) (0.038) (0.050) (0.053) (0.066) (0.040) (0.051) (0.054) 

After 0.263*** 0.261*** 0.272*** 0.161*** 0.197*** 0.265*** 0.183*** 0.227*** 
 (0.069) (0.037) (0.045) (0.045) (0.068) (0.033) (0.046) (0.046) 

Panel B: Controlling for time trend 

During 0.004 -0.119*** -0.091* -0.079 0.050 -0.117*** -0.095* -0.105* 

 (0.075) (0.036) (0.051) (0.049) (0.067) (0.039) (0.050) (0.054) 

After 0.141** 0.158*** 0.170*** 0.050 0.083 0.182*** 0.097** 0.147*** 

 (0.067) (0.034) (0.042) (0.041) (0.064) (0.029) (0.042) (0.044) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

Station FE Yes Yes Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 2,894 8,854 8,846 2,894 2,894 8,852 2,894 8,831 

Note: The Table reports the estimated impacts of public transport disruption on bike-sharing adoption by each type of 

bike journey. Rows 1 and 2 show the estimates of γ1 and γ2 from equation (1) respectively. Columns (1) and (5) show 

the effects for substitute journeys defined as trips that start and end within the spatial coverage (300m) of the subway 

network. Columns (2) and (6) include complementary journeys, i.e., bike trips that does not start nor end within the 

spatial coverage of the subway system. Columns (3-4) and (7-8) include first and last-mile journeys defined as trips that 

start/end beyond/within the spatial coverage (300m) of the subway and ends/starts within/beyond. Columns (1) to (4) 

restrict the analysis to the origin-station dataset. Columns (5) and (8) restrict the analysis to the destination-station 

dataset. Controls include docking stations for e-bikes, station total capacity, distance to the closest cycleway, the number 

of docking stations in a radius of 300m (Density), and the number of new subscriptions into the program. Time trend in 

Panel B controls for the quadratic approximation of outcome’s trend. Cluster standard errors per docking station were 

applied. Significance levels are represented as follows: *p<0.1; **p<0.05; ***p<0.01. 

 

 Different conclusions can be extracted from the Table. First, regarding substitution, the 

estimates are positive (columns (1) and (5)) suggesting that the degree of substitution to 

bike-sharing increased during disruption. Nevertheless, the estimates are not statistically 

different from zero because the expansion in the degree of substitution contribute to restore 
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the before-disruption levels on average. On the other hand, after disruption, the degree of 

substitution is again positive and statistically significant suggesting a long-lasting effect. 

Furthermore, the direction of the effect is robust to the inclusion of square time trends. 

Second, disruption affected the degree of complementarity in the opposite direction during 

the event. Note that the marginal effects are negative for the three types of complementary 

trips (complement, first-mile, and last-mile), however the level of significance varies across 

specifications. What is more, the inclusion of the square time trend does not alter the results. 

As expected, disruption in the network limits intermodal trips decreasing the number of first 

and last-mile journeys. On the contrary, the results suggest and expansion in complementary 

after a fully restoration of the network. In this case, the estimates are positive and significant 

in almost every estimation. Finally, the estimates do not show a considerable variation 

between the origin-station and destination-station datasets. 

 Again, to interpret the results in terms of the number of journeys, the averages by groups 

using the predicted values from Panel B of Table 3 are shown in Table 4. The number of 

daily journeys by docking station that substitutes public transport itineraries increased 

during disruption between 5%-8%. Moreover, the number of all three types of 

complementary journeys fall during disruption. For instance, the daily number of last-mile 

and first-mile journeys in docking stations at origin and destination decreased both by -

9.5%. On the other hand, the results suggest a generalized expansion in the service after full 

restoration of the network. Note that, substitute trips increased by 16%-18% in docking 

stations at the origin and destination, respectively. The expansion is similar for all 

complementary journeys. Overall, these findings show evidence of public transport 

substitution to bike-sharing during disruption. In other words, bike-sharing helped 

commuters to find alternative itineraries to public transport. After disruption, both 

substitutions and complementary journeys increased probably as a consequence of habit 

formation and modal-shift. 
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Table 4. Daily bike journeys as substitutes or complements to public transport 

Group Before During After 
Differences 

During-Before After-Before 

Panel A: Docking station at origin 

Substitutes 
8.5 

(4.9, 14.5) 

9.0 

(5.3, 15.4) 

9.9 

(5.8, 16.9) 
0.5 1.4 

Complement 
16.1 

(10.5, 24.7) 

14.6 

(9.5, 22.4) 

17.7 

(11.5, 27.1) 
-1.5 1.6 

First-mile 
6.1 

(3.4, 11.1) 

5.6 

(3.1, 10.2) 

6.9 

(3.8, 12.5) 
-0.5 0.8 

Last-mile 
18.6 

(12.6, 27.5) 

16.8 

(11.4, 24.9) 

20.5 

(13.8, 30.3) 
-1.8 1.9 

Panel B: Docking station at destination 

Substitutes 
8.4 

(5, 14.3) 

9.1 

(5.4, 15.4) 

9.9 

(5.8, 16.7) 
0.7 1.5 

Complement 
16.1 

(10.6, 24.5) 

14.6 

(9.6, 22.2) 

17.7 

(11.6, 26.8) 
-1.5 1.6 

First-mile 
18.9 

(12.9, 27.8) 

17.5 

(11.9, 25.8) 

21.3 

(14.5, 31.2) 
-1.4 2.4 

Last-mile 
6.0 

(3.2, 11.4) 

5.5 

(2.9, 10.3) 

6.6 

(3.5, 12.4) 
-0.5 0.6 

Note: The Table reports the daily average number of trips by docking stations before; during, and after public transport 

disruption (columns) for different type of journeys (rows). It also reports the difference between the scenario during and 

before as well as the scenario after and before disruption. The values are computed from the fitted approximations of 

estimating equation (1). In other words, the values reported here are averages from the predicted values using the results 

shown in Table 3. The predicted interval at 95% confidence level is reported in parenthesis. Panel A refers to the estimates 

using the origin-station dataset only. Panel B refers to the estimates using the destination-station dataset only. Pooled 

includes all docking stations. Substitute journeys are defined as trips that start and end within the spatial coverage (300m) 

of the subway network. First and last-mile journeys are defined as trips that start/end beyond/within the spatial coverage 

(300m) of the subway and ends/starts within/beyond. Complementary journeys are bike trips that does not start nor end 

within the spatial coverage of the subway system. 

  

 I show visual evidence of the evolution of the effects over time in Figure 10 and Figure 

11. Figures display the time dummies estimates (𝛽𝑞) from equation (2) for both, docking 

station at origin and destination, respectively. As above, the covariate measuring the 

distance to the closest metro station was not considered. Again, the x-axis represents the 

number of weeks elapsed since the incident. Solid red vertical lines indicates network 

disruption. The dummy-out is represented using a dotted line. Each one of the four panels 

(a) to (d), in both Figures, reports respectively the effects for Substitutes, Complements, 

First-mile, and Last-mile journeys. In contrast with the previous section, this time 100 ∗

(𝑒𝛽̂ − 1) represent the percentage change in the number of trips. Therefore, a positive 

coefficient is interpreted as an increase in bike-sharing demand. 
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 The results are in line with the previous findings. However, the evolution week by week 

reveals additional information. In the case of Substitutes journeys, the evidence suggests a 

steep increase in the number of this kind of journeys since the first week of disruptions in 

the network. Furthermore, the positive tendency remained in the whole disruption period. 

Afterwards, once the system was fully restored, the degree of substitution decreased 

gradually until achieving levels similar to those before disruption. On the other hand, 

complementary journeys of every kind suffered a massive decrease just after disruption but 

recovered quickly in the coming weeks. What is more, the Figures show that such tendency 

was maintained for a couple of weeks after the system reopened operations in all the subway 

lines. Nonetheless, the Figures show an attenuation of the effects at the end of the period of 

study. The behavior is more accentuated in the case of first and last-mile journeys. The 

results are similar in both, docking stations at origin and destination. 

 Overall, the findings presented here suggest that public transport disruption had a 

persistent effect on the degree of substitution and complementarity to bike-sharing. 

Although, the effect is vanished after a couple of months. However, as I show in the previous 

section, the attenuation of the effects has not been translated in a contraction of bike-sharing 

ridership. This in turn opens the question of whether the impact is a consequence of modal 

shift which might be possible due to the duration of the disruption. More evidence on this 

regard is presented in section 8. 



 

Page 67 

 

Figure 10. Time-varying effects by type of journey, docking stations at origin  

(a) Substitute (b) Complement 

  
(c) First-mile (d) Last-mile 

  
Note: The Figure reports the weekly dummy (𝛽𝑞) estimates from equation (2) from the origin-station dataset only. X-

axis represents the number of weeks elapsed since the fire on January 9th, 2021. Therefore, the first week of disruption 

is in zero. Solid vertical lines indicate the week when disruption started and the week when the system was fully 

restored. Shaded regions denote an interval confidence at 95% level around the estimates. The dotted line was included 

instead of the dummy intentionally left out from the regression. Figure (a) shows the effects for substitute journeys 

defined as trips that start and end within the spatial coverage (300m) of the subway network. Figures (b) and (c) include 

first and last-mile journeys defined as trips that start/end beyond/within the spatial coverage (300m) of the subway and 

ends/starts within/beyond. Figure (d) refers to as complementary journeys, i.e., bike trips that does not start nor end 

within the spatial coverage of the subway system. 
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Figure 11. Time-varying effects by type of journey, docking stations at destination 

(a) Substitutes (b) Complements 

  
(c) First-mile (d) Last-mile 

  
Note: The Figure reports the weekly dummy (𝛽𝑞) estimates from equation (2) from the destination-station dataset only. 

X-axis represents the number of weeks elapsed since the fire on January 9th, 2021. Therefore, the first week of disruption 

is in zero. Solid vertical lines indicate the week when disruption started and the week when the system was fully 

restored. Shaded regions denote an interval confidence at 95% level around the estimates. The dotted line was included 

instead of the dummy intentionally left out from the regression. Figure (a) shows the effects for substitute journeys 

defined as trips that start and end within the spatial coverage (300m) of the subway network. Figures (b) and (c) include 

first and last-mile journeys defined as trips that start/end beyond/within the spatial coverage (300m) of the subway and 

ends/starts within/beyond. Figure (d) refers to as complementary journeys, i.e., bike trips that does not start nor end 

within the spatial coverage of the subway system. 

  

6.3  Effects on bike journeys duration 

 

A follow-up question is whether the increase in the degree of substitution was accompanied 

by an increase in the intensity of use of bikes during and after disruption. In this work, I 

focus on measuring the effects on the duration of journeys. It is not possible to observe in 

the data the actual trajectory taken by users, however, it does indicate the undocking and 

docking time of each journey, which allows me to compute a proxy of the actual travel time. 

To measure the effects of disruption on journeys duration, I have followed a different 

approach exploiting journey level data to estimate the following relationship: 
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𝑙𝑛(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)𝑖,𝑡 =  𝛽1𝑑𝑢𝑟𝑖𝑛𝑔𝑡 +  𝛽2𝑎𝑓𝑡𝑒𝑟𝑡 +  𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝑖,𝑡
′ Υ + 𝑥𝑖,𝑡

′ Γ + 𝜇𝑖,𝑡 (3) 

 

The vector 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝑖,𝑡
′  includes a dummy indicating the type of journey and the 

interaction terms with 𝑑𝑢𝑟𝑖𝑛𝑔𝑡 and 𝑎𝑓𝑡𝑒𝑟𝑡. On the other hand, the vector 𝑥𝑖,𝑡
′  includes a set 

of trip level controls (gender, age, and age2), stations-level controls (same as above), 

outcome square time trend, number of new subscriptions, and a set of time fixed effects 

(week of the year, month of the year, day of the week, hour of the day) to capture time-

varying conditions that affect duration such as whether, riding during peak vs off-peak 

hours, among others. 

 Estimates are shown in Table 5. Columns (1) to (3) exclude 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝑖,𝑡
′  and differ in 

whether fixed effects were included in the regression. Columns (4) to (6) add estimates for 

the covariates in 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝑖,𝑡
′ . As can be seen from the Table, the results suggest that 

duration of bike journeys increased during disruption, every estimate is positive and 

statistically different from zero. The magnitude of the estimated coefficients suggests that 

disruption is associated with an increase in the travel time in between 8.2%-13.1%. This in 

turn represents an increase of 2 minutes with respect to the average journey duration (15.7 

minutes). The effect after disruption is also positive and statistically significant, which might 

suggest that public transport disruption had a positive effect in the intensive margin of bike-

sharing ridership in the long-run. Nevertheless, the magnitude of the effect is lower and 

ranges between 3.0% and 9.5% (i.e., close to 1.5 minutes with respect to the average). 

 Regarding the heterogenous effect by type of journey, the estimates in columns (4) to (6) 

in Table 5 suggest changes in the intensive margin of bike ridership across journey types 

during disruption. In fact, the duration of bike journeys as substitutes to the subway 

increased 16.4% with respect to the average duration of complementary journeys in the same 

period. On the other hand, comparing substitution trips during and before disruption, the 

duration of the trips suffered a percentage increase of 14.1% in contrast with the 12.1% 

comparing the scenarios before-after. A similar pattern is found for complementary trips 

which duration increased by 10.1% and 9.3%. Overall, these findings are in line with the 

usage of bike-sharing to bridge disruptions in the network. Riders are willing to do longer 

trips to complete their journeys as a consequence of a lack of connection inside the network. 
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Furthermore, as expected, no difference is found between substitutes and complementary 

journeys once the network is restored. 

 

Table 5. Disruption effects on the bike journeys duration 

 Dependent variable: 

 ln(Journey duration) 
 (1) (2) (3) (4) (5) (6) 

During 0.079*** 0.077*** 0.123*** 0.076*** 0.074*** 0.117*** 
 (0.002) (0.002) (0.023) (0.002) (0.002) (0.023) 

After 0.030*** 0.030*** 0.091*** 0.029*** 0.029*** 0.089*** 
 (0.001) (0.001) (0.015) (0.001) (0.001) (0.015) 

Substitutes    0.105*** 0.140*** 0.137*** 
    (0.003) (0.004) (0.004) 

Substitutes*During    0.017** 0.014** 0.015** 
    (0.007) (0.007) (0.007) 

Substitutes*After    0.011** 0.006 0.007 
    (0.005) (0.005) (0.005) 

Constant 2.732*** 2.647*** 5.278*** 2.727*** 2.608*** 5.154*** 
 (0.008) (0.008) (0.798) (0.008) (0.008) (0.797) 

Individual characteristics Yes Yes Yes Yes Yes Yes 

Station’s characteristics No Yes Yes No Yes Yes 

New subscriptions No No Yes No No Yes 

Week of the year FE No No Yes No No Yes 

Month of the year FE No No Yes No No Yes 

Day of the week FE No No Yes No No Yes 

Hour of the day FE No No Yes No No Yes 

Trend No No Yes No No Yes 

Observations 1,280,729 1,280,729 1,280,729 1,280,729 1,280,729 1,280,729 

R2 0.005 0.027 0.032 0.007 0.029 0.035 

Adjusted R2 0.005 0.027 0.032 0.007 0.029 0.035 

Note: The Table reports the estimated impacts of public transport disruption on the duration of the trip. Each 

row shows the estimates from equation (3). Substitutes is a dummy identifying substitute bike journeys defined 

as trips that start and end within the spatial coverage (300m) of the subway network. Columns differ in the 

inclusion of controls, fixed effects, and outcome quadratic time trend. Controls include user’s gender, age, age2, 

distance to the closest subway station, docking stations for e-bikes, station total capacity, distance to the closest 

cycleway, and the number of docking stations in a radius of 300m (Density). Robust standard errors were 

applied. Significance levels are represented as follows: *p<0.1; **p<0.05; ***p<0.01. 
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7. Heterogeneity and robustness 

 

7.1  Specification checks 

 

Placebo analysis. One concern to the empirical strategy is that estimates are driven by 

random variations in the demand for bike-sharing over time. To show that the results are 

robust to this caveat, I replicate the analysis using a placebo sample with a different date 

that simulates public transport disruption. To produce a parallel sample, I take January 11th, 

2020, as the first day of disruption (1 year before) and I count the same number of weeks 

before and during this placebo disruption scenario. Holidays and day-off were again 

dropped according to the schooling calendar. This placebo sample has the advantages that 

January 11th, 2020, is the first day after school holidays which allows us to reassure that the 

effect is driven by public transport disruption and not by seasonality in the school calendar. 

In addition, the sample is ideal to avoid any potential issues related with the global 

pandemic. It is relevant to clarify that the number of weeks after disruption in this placebo 

sample are reduced to avoid the first Covid-19 related lockdown in the city. As noticed in 

Table A-1, the corresponding coefficients are statistically not different from zero. To 

provide a visual inspection of the effects in this placebo sample, I estimate time dummies 

from equation (2). The results are summarized in Figure A-1 (a) and (b), which uses 

respectively the origin-station and destination-station samples. As expected, the Figures 

show a smooth behavior around both placebo time thresholds determining the during and 

after periods. Hence, the evidence presented here suggest that my findings are robust to the 

random variance of bike-sharing ridership over time. 

 

Alternative threshold for the spatial integration. Even though some studies suggest that 

docking stations located within three hundred meters of the subway network might be 

considered spatially integrated with this transport mode, it is not clear whether this threshold 

reflects the specific case of Mexico City. Therefore, I reproduce the results for substitutes 

and complement journeys for a wide range of spatial thresholds. Details of these findings 

are discussed in Table A-2. The thresholds consider ranges from 200m to 1200m in a 

frequency of 200m, displayed in rows in the Table. Panels in the Table indicates the type of 

journey: substitutes (A), complements (B), first-mile (C), and last-mile (D). Notice that 
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estimates of substitutes journeys, especially during disruption, are sensible to the choice of 

the distance. In fact, for a threshold of 400m and beyond, the results suggest a percentage 

decrease in the number of this type of bike journeys. Further research is needed to improve 

the identification of bike trips substituting the public network. On the other hand, estimates 

after disruption are robust to the choice of different thresholds. Regarding complementary 

trips, all the results are in line with the estimates presented in Table 3 regardless of the 

distance considered, the period of analysis (during or after), as well as the sample used 

(origin-station or destination-station). In other words, these results show that the number of 

complementary journeys decreased with the level of spatial integration during disruption 

but increased afterwards. Nonetheless, in terms of magnitude and significance, the effects 

are larger for short distances, especially in the case of first and last-mile journeys but vanish 

once larger distances are reached reassuring the intuition that those journeys serve as 

connections to public transport. 

 

7.2  Heterogeneity across docking stations 

 

In this section I explore heterogenous effects of public transport disruption for distinctive 

characteristics of docking stations. I replicate the main analysis for different subsamples as 

follows. Docking stations for e-bikes vs standard bikes. In the Mexican bike-sharing model 

e-bikes are only available in specific docking stations which, at the same time, cannot 

allocate standard bikes. This characteristic is identifiable in our sample. Docking station 

capacity, i.e., the total number of bikes that each docking station can support. I split the 

sample in two, low capacity between 10 to 23 bikes and high capacity between 24 and 36 

docks (10 and 36 are the minimum and maximum capacity in the city). Docking stations 

connected with dedicated bike lines. I split again the sample in two: stations within and 

beyond 300m to the closest cycleway. Density of additional stations in a radius of 300m. 

This time I considered four different configurations: stations that share the space with 

exactly one additional station, where there are more than one, three or nine stations nearby. 

   Table A-3 summarizes all the results. The influence of e-bikes is irrelevant in this case 

(the estimates are mostly not significant) due to the small number of observations in 

comparison with standard stations (only 5.8% of docking stations are e-bikes). Regarding 

the size of the stations, it is irrelevant to determine the total effect. The effect is slightly 
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larger in low-capacity stations contrary with the intuition. One could expect that riders prefer 

higher stations to decrease the uncertainty of finding available bikes at origin or empty docks 

at destination. However, it might be the case that users reduce such uncertainty by preferring 

denser regions in terms of number of stations. This strategic behavior might help them to 

reduce the expected travel time. In fact, this intuition is supported by the empirical evidence. 

As noticed, having at least one additional docking station nearby is relevant for users. What 

is more, during disruption, the density matter for users at origin and destination. However, 

under normal conditions, the estimates suggest that users value more denser areas at 

destination. Finally, the relationship with the proper infrastructure for cycling is also 

important for riders, the effects seem to arise from docking station with cycleways nearby 

before and after disruption. These results are in line with recent studies regarding the 

relevance of cycling infrastructure (Ashraf et al., 2021). 

 

8. Influence on subway ridership 

 

This article presents evidence of a dichotomic relationship between bike-sharing and public 

transport in Mexico City. It also shows how a disruption of the subway system affect the 

dynamics between both transport modes. The main findings suggest an increase in the 

degree of substitution during disruption and even after, when the network was fully restored. 

On the other hand, complementary bike journeys to public transport decreased during 

disruption, but the scenario after disruption shows an important recovery exceeding the 

levels observed before the incident. Nonetheless, a relevant question is whether the 

expansion of bike-sharing due to disruptions in the network has generated a modal-shift 

displacing subway ridership. Providing evidence in this regard is crucial for policy purposes 

because bike-sharing might represent a viable alternative to reduce car-dependency (to 

tackle transport related concerns) in as much as it complements public transport systems. 

 According to Goodwin (1977), habits prevent commuters to revise their choice set every 

time they travel limiting their capacity to notice changes in the attractiveness of new modes 

of transport. In addition, Goodwin argues that disturbances in the environment force 

commuters to deliberate among new alternatives. Disruptions in public transport is a well-

documented case on how changes to the environment might alter commuters behavior (Zhu 

& Levinson, 2012; Tyndall, 2019; Yeung & Zhu, 2022). In the context of this article, 
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disruption in the subway introduced bike-sharing into the choice set of different commuters 

increasing the number and intensity of use of this mode. Furthermore, the evidence 

presented here show long lasting effects suggesting that riders might have formed habits 

during the weeks of disruption putting bike-sharing as a viable option even under normal 

circumstances. This in turn might influence subway ridership by affecting the level of 

substitution between both modes.  

 Nevertheless, assessing modal-shift requires detailed information on commuters to be 

able to identify changes in their choice-sets and to observe their preferences among 

alternatives. This is important because modal shift does not necessarily come from public 

transport to bike-sharing. Affectations in the network disrupts other modes of transport by 

altering congestion on the streets and on other public transport services such as buses 

(Anderson, 2014). However, revealed preferences data from commuters is difficult to collect 

especially under the context of disruptions. In this paper instead, I proceed by studying the 

relationship between subway and bike-sharing ridership at three different levels of 

aggregation: at city, subway lines and subway stations level. This strategy helps me to 

identify to what extent bike-sharing adoption is associated with displacement in subway 

ridership. 

 To relate changes in subway ridership relative to the demand for bike-sharing as a 

consequence of the public system disruption, I estimate the following relationship: 

 

𝑙𝑛𝑦𝑖,𝑡 =  𝜃1(𝑙𝑛𝐵𝑟𝑖,𝑡 × 𝑑𝑢𝑟𝑖𝑛𝑔𝑡) + 𝜃2(𝑙𝑛𝐵𝑟𝑖,𝑡 × 𝑎𝑓𝑡𝑒𝑟𝑡) + 𝑥𝑖,𝑡
′ 𝛤 + 𝜇𝑖,𝑡 (4) 

 

where subindex 𝑡 represents days since disruption. Moreover, 𝑖 stands for subway lines or 

stations depending on the level of desegregation. For the purpose of the exposition, I will 

consider 𝑖 as the subway station in the description of the empirical strategy. The outcome 

𝑙𝑛𝑦𝑖,𝑡 is the logarithm of the number of daily travelers entering in the network in station 𝑖. 

The vector 𝑥𝑖,𝑡
′  includes time fixed effects, subway line and subway station fixed effects, 

district fixed effects, square time trends by station as well as the covariates 𝑑𝑢𝑟𝑖𝑛𝑔𝑡 and 

𝑎𝑓𝑡𝑒𝑟𝑡. This vector also includes a set of controls to the built environment such as the 

density of docking station nearby, an indicator for the type of subway station (transfer or 

intermediate station), distance to the closest cycleway, distance to district downtown, and 

distance to the city’s downtown. Also, 𝜇𝑖,𝑡 is the error term. The 𝑙𝑛𝐵𝑟𝑖,𝑡 is the logarithm of 
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the number of bike journeys overall or by type (substitutes, complements, first-mile, and 

last-mile). As in the previous strategy, I exploited the spatial characteristics of both transport 

modes to relate subway and bike-sharing ridership assigning docking stations to the closest 

subway line/station in terms of the planar distance between each other. Therefore, the bike-

sharing ridership associated to a specific subway line/station is generated from docking 

stations within the spatial vicinity. This strategy allows the classification of each bike 

journey by type.  

I estimated equation (4) using OLS at city level. On the line/station disaggregation, I 

estimate a Poisson regression model because we are interested in the logarithmic 

relationship of the outcome. However, a simple logarithmic transformation is not viable 

because the flux of passengers in stations closed during disruption is zero. Furthermore, 

when I analyze the effects at stations level, I apply the hyperbolic sine transformation to the 

number of bike journeys by type. This is because some docking stations do not produce 

specific types of journeys. Cluster standard errors at the subject level (subway lines or 

stations) are considered.  

Finally, the vectors of coefficients θ1 and θ2 measure the effects of increasing bike-

sharing demand on subway ridership before, during, and after disruption. For instance, a 

negative coefficient is evidence that bike-sharing and public transport are substitutes. In 

other words, a percentage increase of one percent in bike-sharing ridership should be 

associated with a percentage decrease of subway ridership by the corresponding estimated 

coefficient. Moreover, if the expansion of bike sharing demand is not associated with 

subway ridership displacement, then we would expect to find positive estimates (statistically 

equal to zero) in the after-disruption scenario.  

One important limitation in the analysis is that subway ridership is measured as the flux 

of commuters entering in each station which imposes important concerns to identify the 

relationship with last-mile journeys. A better approximation would be to use the flux of 

commuters leaving the station; however, I am restricted by the available information in the 

dataset. Nevertheless, a high correlation between the in/out flux by station is expected 

making the outcome a good approximation for the ideal measure. Another challenge is to 

separate the intensive and extensive margin regarding bike system. The expansion of bike-

sharing demand might come as a consequence of an increase in the number of users 

(extensive margin) or due to an increase in the frequency of use of riders already registered 
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in the system (intensive margin). Because I am only using information from working days, 

it is implausible that the effect comes from the intensive margin. Nonetheless, I estimated 

the effect of disruption to the number of new subscriptions adapting equation (3) to provide 

evidence about the expansion of bike-sharing in terms of the number of riders. 

 

8.1  Results 

 

This section’s main results are reported in Table 6 and Table 7. Overall, the findings suggest 

that disruption is associated with an increase in the degree of complementarity between both 

transport modes. Nevertheless, the direction and magnitude of the effect differs between the 

level of aggregation. Restricting the analysis to subway lines integrated with bike-sharing 

shows evidence of subway substitution to bike-sharing. In other words, increasing the bike-

sharing ridership is associated with lower subway ridership within those lines during and 

after disruption. Estimates suggest that increasing by 10% the number of bike-sharing 

journeys decreases by 3.3% and 0.4% subway ridership during and after disruption, 

respectively. However, more granular data shows the opposite results. When subway 

ridership is considered only in stations integrated with bike-sharing, both modes 

complement each other. According to the point estimates, increasing the number of bike-

sharing journeys by 10% increases subway ridership by 1.2% and 0.3% during and after 

disruption.  

Contradictory results in terms of the direction of the effect when more granular data is 

considered might be explained due to the spatial influence of bike-sharing system in the 

city. Due to physical restrictions, the influence of bike-sharing is limited to the location and 

distribution of docking stations. In contrast, the analysis at subway-line level considers users 

entering in stations not integrated with bike-sharing. In some extreme cases, bike-sharing is 

integrated in a small fraction of entire lines. Therefore, expanding the demand for bike-

sharing should not influence the ridership in those stations specially when only inflow 

ridership is considered. Moreover, bike-sharing ridership might influence the outflow of 

passengers in outer regions. A more granular data in terms of the number of passengers 

exiting each subway station is suitable to fully explain this result. 
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Table 6. Bike-sharing influence on subway ridership 

 Dependent variable: 

 ln(Subway ridership)  Subway ridership 

 OLS  Poisson 

 Aggregated  Subway lines  Subway stations 
 (1) (2)  (3) (4)  (5) (6) 

ln(Bike ridership) 
0.125* 

(0.067) 

0.124* 

(0.065) 

 0.247** 

(0.112) 

0.246** 

(0.112) 

 0.122*** 

(0.024) 

0.122*** 

(0.024) 

During 
-7.694*** 

(1.044) 

-7.650***  

(1.028) 

 1.491*** 

(0.289) 

1.485*** 

(0.289) 

 -1.350*** 

(0.126) 

-1.350***  

(0.126) 

After 
-2.537*** 

(0.954) 

-2.584***  

(0.943) 

 -0.295** 

(0.125) 

-0.301** 

(0.125) 

 -0.715*** 

(0.049) 

-0.716***  

(0.049) 

ln(Bike ridership)*During 
0.762*** 

(0.113) 

0.756*** 

(0.112) 

 -0.334*** 

(0.051) 

-0.334*** 

(0.051) 

 0.121*** 

(0.024) 

0.121***  

(0.024) 

ln(Bike ridership)*After 
0.228  

(0.102) 

0.232** 

(0.101) 

 -0.041*** 

(0.005) 

-0.041*** 

(0.005) 

 0.032*** 

(0.006) 

0.032***  

(0.006) 

Controls and FE Yes Yes  Yes Yes  Yes Yes 

Output trend No Yes  No Yes  No Yes 

Observations 121 121  968 968  6,403 6,403 

R2 0.986 0.986       

Adjusted R2 0.984 0.984       

Log Likelihood (Mio.)    -9.490 -9.488  -6.117 -6.116 

Akaike Inf. Crit. (Mio.)    18.980 18.975  12.233 12.233 

Residual Std. Error 0.028 0.028       

F Statistic 496.5***  465.8***       

Note: The Table reports the estimated impact of bike-sharing on subway ridership during and after disruption. Columns report 

estimates at city level (1-2), subway line level (3-4), and subway station level (5-6). Regressions at aggregated level include 

new subscriptions, day of the week, and month as controls and fixed effects. Line fixed effects and the density of docking 

station nearby are added when subway lines are considered. For the analysis at station level, the type of subway station 

(transfer or intermediate station), district, zip code, distance to city downtown, distance to district downtown, and distance to 

closest cycleway are also included. Trend refers to the outcome quadratic trend. Cluster standard errors at subway line and 

station were applied in each case. Significance levels are represented as follows: *p<0.1; **p<0.05; ***p<0.01. 

 

The estimates by type of bike-journey provide a more detailed information about the 

dynamics between both transport modes (see Table 7). As expected, considering only 

subway stations integrated with bike-sharing, increasing the number of bike-journeys that 

substitute subway itineraries is negatively associated with subway ridership during. 

Increasing by 10% substitution journeys diminishes on average subway ridership in those 
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stations by 0.6%. It is noteworthy that the effect is sustained at a lower extend even after 

disruption. In this case, the response is reduced to 0.1%. 

Complementary journeys, i.e., those that happened outside the spatial coverage of the 

subway system, show equivalent results. What is more relevant from the analysis is that this 

behavior even is sustained after fully restoration of the network. The case of first-mile bike 

journeys supports the previous evidence. Again, the direction of the effect is as expected, 

however, a larger effect after disruption in comparison with the scenario before suggests a 

larger degree of complementarity as a result of disruptions in the network. Last-mile trips 

on the other hand shows a negative and significant effect during and after disruption. The 

interpretation of these estimates is less evident. They suggest that improving connectivity 

for the last-mile, decreases the complementarity between both modes harming multimodal 

behavior. Nevertheless, as I mentioned above, interpreting these coefficients should be done 

with caution because subway ridership does not measure the number of users exiting the 

network. To accurately measure last-mile complementarities, stations’ outflow is desired. 

Previous findings are evidence on how disruption in the subway system changed the 

market dynamics with bike-sharing. Nevertheless, limitations in the data prevent us to 

disentangle whether the expansion of bike-sharing and its influence on subway ridership is 

consequence of more users shifting to bike-sharing (extensive margin) or an increase in the 

intensity of use of this mode (intensive margin). As a first attempt to study such difference, 

Table 8 reports the effects of disruption on the daily number of new subscriptions. As 

noticed, the results suggest that disruption is associated with an expansion in the number of 

citizens registered to ECOBICI. Nevertheless, caution interpreting these results its advised. 

Even if bike-sharing membership increased, the data does not allow to link it with the 

effective demand of those new members.  
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Table 7. Bike-sharing influence on subway ridership by type of journey 

 Dependent variable: 

 
ln(Subway 

ridership) 
Subway ridership 

ln(Subway 

ridership) 
Subway ridership 

ln(Subway 

ridership) 
Subway ridership 

ln(Subway 

ridership) 
Subway ridership 

 OLS Poisson OLS Poisson OLS Poisson OLS Poisson 

 Aggregated Lines Stations Aggregated Lines Stations Aggregated Lines Stations Aggregated Lines Stations 
 (1) (2) (3)++ (4) (5) (6)++ (7) (8) (9)++ (10) (11) (12)++ 

ln(Substitutes)*During 
0.626*** 

(0.099) 

-1.061*** 

(0.153) 

-0.064*** 

(0.012) 
         

ln(Substitutes)*After 
0.139 

(0.064) 

-0.118*** 

(0.008) 

-0.016*** 

(0.004) 
         

ln(Complement)*During    0.753*** 

(0.120) 

-0.204*** 

(0.029) 

0.068*** 

(0.010) 
      

ln(Complement)*After    0.217** 

(0.097) 

-0.024*** 

(0.003) 

0.029*** 

(0.002) 
      

ln(First-mile)*During       0.732*** 

(0.124) 

-0.246*** 

(0.034) 

0.066*** 

(0.012) 
   

ln(First-mile)*After       0.225** 

(0.107) 

-0.033*** 

(0.004) 

0.031*** 

(0.003) 
   

ln(Last-mile)*During          0.762*** 

(0.145) 

-0.471*** 

(0.078) 

-0.030*** 

(0.011) 

ln(Last-mile)*After          0.238** 

(0.101) 

-0.070*** 

(0.009) 

-0.010*** 

(0.003) 

Observations 121 968 6,403 121 968 6,403 121 968 6,403 121 968 6,403 

R2 0.985   0.986   0.985   0.984   

Adjusted R2 0.983   0.983   0.983   0.982   

Log Likelihood (Mio.)  -7.511 -6.146  -9.508 -6.105  -9.432 -6.129  -9.595 -6.147 

Residual Std. Error 0.030   0.029   0.029   0.031   

F Statistic 424.8***   445.9***   437.8***   405.5***   

Note: The Table reports the estimated impact of bike-sharing on subway ridership during and after disruption by type of bike-sharing journey. Substitute journeys are defined as trips that 

start and end within the spatial coverage (300m) of the subway network. First and last-mile journeys are defined as trips that start/end beyond/within the spatial coverage (300m) of the subway 

and ends/starts within/beyond. Complementary journeys are bike trips that does not start nor end within the spatial coverage of the subway system. Bike journey were transformed using the 

inverse hyperbolic sine function (instead of the natural logarithm) in columns marked as ++. Regressions at aggregated level include new subscriptions, day of the week, and month as controls 

and fixed effects. Line fixed effects and the density of docking station nearby are added when subway lines are considered. For the analysis at station level, the type of subway station (transfer 

or intermediate station), district, zip code, distance to city downtown, distance to district downtown, and distance to closest cycleway are also included. Every model includes the outcome 

quadratic trend. Cluster standard errors at subway line and station are considered in each case. Significance levels are represented as follows: *p<0.1; **p<0.05; ***p<0.01.
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Table 8. Impact on the number of new users 

 Dependent variable: 

 ln(Daily No. of new subscriptions) 
 (1) (2) (3) 

During 0.488** 0.524** 0.686*** 
 (0.207) (0.210) (0.233) 

After 0.206 0.278 0.485 
 (0.375) (0.381) (0.401) 

Constant 3.456*** 5.003*** 5.743*** 
 (0.505) (1.532) (1.613) 

Month of the year FE Yes Yes Yes 

Week of the year FE Yes Yes Yes 

Day of the week FE Yes Yes Yes 

Trend No Yes Yes 

Lag No No Yes 

Observations 120 120 119 

R2 0.754 0.757 0.764 

Adjusted R2 0.651 0.652 0.656 

Residual Std. Error 
0.268  

(df = 84) 

0.268  

(df = 83) 

0.267  

(df = 81) 

F Statistic 
7.345***  

(df = 35; 84) 

7.185***  

(df = 36; 83) 

7.093***  

(df = 37; 81) 

Note: The Table reports the estimated impact of public transport disruption on the number 

of new subscriptions to the bike-sharing program. Each row shows the estimates from 

equation (1) excluding the covariate di. Trend refers to a quadratic approximation in the 

trend of daily new subscriptions and Lag is refer to the first lagged value of the outcome. 

Robust standard errors were applied. Significance levels are represented as follows: 

*p<0.1; **p<0.05; ***p<0.01. 

 

9. Conclusion 

 

This article investigates the impact of public transport disruptions on the adoption of bike-

sharing. I exploit an extemporaneous event that shut down operations in 50% of the subway 

lines in Mexico City in a natural experimental setting to causally identify public transport 

substitution to bike-sharing. In addition, I provide empirical evidence on the spatial 

influence of subway networks to compare outcomes of docking stations with different 

degrees of spatial integration to public transport. Furthermore, using the spatial integration 

between both systems, I measure heterogenous effects by type of bike-sharing journeys 

including substitutes, complement, first, and last-mile connections. Finally, due to the 

amount of information available, I study the evolution of the effects over time. 
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 Overall, my findings suggest an increased in the degree of substitution to bike-sharing 

associated to public transport disruption, especially in docking stations highly integrated 

with the subway network. Complementarity decreased during this period including both, 

first and last-mile journeys. This result was expected due to the lack of connectivity within 

the network. What is more, the empirical evidence suggests that disruptions were associated 

with an overall increase in the adoption of bike-sharing in the long-run. As a matter of fact, 

the number of bike journeys complementing and substituting public transport increased in 

the weeks after the restoration of the system. To ease the interpretation of these findings, I 

measure the influence of bike-sharing on subway ridership conditional on the network 

disruption. The estimates are positive during and after disruption when only subway stations 

integrated with the system are considered. These results suggest that disruptions in the 

network increased the degree of complementarity between both transport modes. 

Nevertheless, further research is needed to better understand whether the evidence found 

here is the consequence of modal shift from private cars. 

 The findings presented here might help policy makers to design multimodal mobility 

systems resilient to disruptions and compatible to face the current sustainable and 

environmental challenges. The dichotomic relationship between new mobility services and 

public transport is beneficial to face recent challenges such as disruptions and congestion 

while providing alternativities to reduce car-dependency. However, very few is known 

about this type of markets especially due to the recentness of such innovations and the 

limited availability of data. The introduction of these new modes challenged the traditional 

vertically integrated urban mobility and have given room to a more decentralized 

organization. This in turn raises new questions which answers will help societies to unlock 

the whole potential of an integrated multimodal mobility system. 
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Appendix A. Robustness test and additional results 

 

Figure A-1. Placebo analysis - Visual inspection 

(a) Origin docking stations (b) Destination docking stations 

  
Note: The Figure reports the weekly dummy (𝛽𝑞) estimates from equation (2) for the placebo sample. X-axis represents 

the number of weeks elapsed since the placebo date of disruption on January 11th, 2020. Therefore, the first week of 

disruption is in zero. Solid vertical lines indicate the week when disruption started and the week when the system was 

fully restored. Shaded regions denote an interval confidence at 95% level around estimates. The dotted line was included 

instead of the dummy intentionally left out from the regression. Figure (a) shows the effects from the origin-station 

dataset only. Figure (b) shows the effects from the destination-station dataset only. The analysis was restricted to 10 

weeks after disruption to avoid the effects of the global pandemic Covid-19.  

 

Figure A-2. Evolution of bike-sharing and subway ridership  

(Index: 2019-Q1 = 100) 

 

 
Note: The Figure reports the quarterly number of bike-sharing and subway ridership indexed to the first 

quarter of 2019. Series not seasonally adjusted. 

 

 

 



 

Page 85 

 

Table A-1. Robustness test, disruption effects on a placebo sample 
 Dependent variable: 

 ln(Journeys) 
 Origin-station Destination-station 
 (1) (2) (3) (4) 

During*Distance -0.005 -0.003 0.001 -0.002 

 (0.003) (0.004) (0.003) (0.002) 

After*Distance 0.0004 -0.002 0.001 -0.005* 

 (0.006) (0.002) (0.003) (0.002) 

During -0.040*** -0.318*** -0.034*** -0.322*** 

 (0.012) (0.015) (0.012) (0.016) 

After 0.023** 0.062*** 0.035*** 0.056*** 

 (0.010) (0.006) (0.010) (0.007) 

Distance -82.922*** 2.274 -98.602*** 1.783 

 (0.002) (3.593) (0.001) (5.196) 

Capacity 0.352*** -0.009 0.323*** -0.006 

 (0.000) (0.015) (0.000) (0.017) 

E-station -1.753*** 0.050 -1.588*** 0.030 

 (0.000) (0.076) (0.000) (0.084) 

Distance to cycleway -0.018*** 0.001 -0.019*** 0.0004 

 (0.000) (0.001) (0.000) (0.001) 

Density 3.556*** -0.105 2.954*** -0.068 

 (0.000) (0.154) (0.000) (0.156) 

Subscriptions 0.001 0.014*** 0.001 0.013*** 

 (0.001) (0.001) (0.001) (0.001) 

Constant -2.182*** -0.944*** 0.766*** -0.951*** 

 (0.103) (0.113) (0.095) (0.127) 

Stations FE Yes Yes Yes Yes 

Week FE Yes Yes Yes Yes 

Stations' trend No Yes No Yes 

Observations 9,467 9,467 9,467 9,467 

R2 0.950 0.960 0.950 0.959 

Adjusted R2 0.947 0.957 0.948 0.956 

Note: The Table reports the estimated impact of public transport disruption on bike-sharing adoption using 

the placebo dataset. Rows 2 and 4 show the estimates of β1 and β2 from equation (1), respectively. Distance 

is the planar distance between subway and docking stations. Controls include docking stations for e-bikes, 

station total capacity, distance to the closest cycleway, the number of docking stations in a radius of 300m 

(Density), and the number of new subscriptions into the program. Stations’ trend control for the quadratic 

approximation of outcome’s trend. The analysis was restricted to 10 weeks after disruption to avoid the 

effects of the global pandemic Covid-19. Cluster standard errors per docking station were applied. 

Significance levels are represented as follows: *p<0.1; **p<0.05; ***p<0.01. 
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Table A-2. Sensitivity analysis to various levels of spatial integration

 Dependent variable: ln(Journeys) 

 During  After  During  After 

 Origin Destination  Origin Destination  Origin Destination  Origin Destination 
 (1) (2)  (3) (4)  (1) (2)  (3) (4) 

Panel A: Substitutes  Panel B: Complement 

200m 0.080 (0.110) 0.006 (0.112)  0.108 (0.098) 0.117 (0.090)  -0.101*** (0.030) -0.102*** (0.033)  0.145*** (0.027) 0.162*** (0.027) 

400m -0.049 (0.058) -0.023 (0.061)  0.117** (0.051) 0.063 (0.053)  -0.095** (0.042) -0.117*** (0.043)  0.130*** (0.040) 0.172*** (0.033) 

600m -0.034 (0.039) -0.046 (0.037)  0.091*** (0.035) 0.103*** (0.034)  -0.086 (0.065) -0.067 (0.064)  0.146** (0.058) 0.199*** (0.050) 

800m -0.057* (0.032) -0.067** (0.031)  0.114*** (0.028) 0.124*** (0.027)  -0.061 (0.091) -0.097 (0.087)  0.111 (0.089) 0.159** (0.080) 

1000m -0.083*** (0.029) -0.086*** (0.029)  0.130*** (0.025) 0.144*** (0.025)  0.033 (0.149) 0.016 (0.131)  0.076 (0.150) 0.083 (0.116) 

1200m -0.104*** (0.027) -0.101*** (0.028)  0.136*** (0.023) 0.152*** (0.023)  0.212 (0.254) 0.101 (0.249)  -0.188 (0.290) 0.106 (0.196) 

Panel C: First-mile  Panel D: Last-mile 

200m -0.131** (0.063) -0.047 (0.056)  0.180*** (0.051) 0.112** (0.048)  -0.039 (0.059) -0.128* (0.070)  0.082* (0.049) 0.118** (0.058) 

400m -0.160*** (0.050) -0.118** (0.056)  0.205*** (0.036) 0.148*** (0.045)  -0.040 (0.052) -0.104** (0.051)  0.101** (0.045) 0.211*** (0.044) 

600m -0.211*** (0.054) -0.204*** (0.057)  0.226*** (0.043) 0.165*** (0.047)  -0.141** (0.056) -0.148** (0.058)  0.164*** (0.045) 0.202*** (0.046) 

800m -0.225*** (0.065) -0.206*** (0.070)  0.265*** (0.055) 0.211*** (0.056)  -0.108* (0.059) -0.129* (0.072)  0.182*** (0.053) 0.232*** (0.053) 

1000m -0.189** (0.092) -0.196** (0.077)  0.243*** (0.075) 0.203*** (0.067)  -0.054 (0.077) -0.110 (0.097)  0.151** (0.070) 0.159** (0.071) 

1200m -0.099 (0.112) -0.102 (0.095)  0.182* (0.104) 0.188** (0.082)  0.058 (0.101) -0.079 (0.122)  0.113 (0.088) 0.165* (0.099) 

Controls Yes Yes  Yes Yes  Yes Yes  Yes Yes 

Stations FE Yes Yes  Yes Yes  Yes Yes  Yes Yes 

Time FE Yes Yes  Yes Yes  Yes Yes  Yes Yes 

Stations' trend Yes Yes  Yes Yes  Yes Yes  Yes Yes 

Note: The Table reports the estimated impacts of public transport disruption on bike-sharing adoption by each type of bike journeys for different measures of spatial integration with subway 

system (from 200m to 1200m each 200m). Columns (1) and (2) report the estimates of 𝛽1 while columns (2) and (3) reports 𝛽2 estimates from equation (1). Columns (1) and (3) in each panel 

refer to the estimates using the origin-station dataset only. Columns (2) and (4) refer to the estimates using the destination-station dataset only. Panel A reports the effects for substitute journeys 

only defined as trips that start and end within the spatial coverage of the subway network that corresponds to the specified row. Panel B refers to complement journeys, i.e., bike trips that does 

not start nor end within the spatial coverage of the subway system. Panels C and D include first/last mile journeys defined as trips that start/end beyond/within the spatial coverage of the 

subway and ends/starts within/beyond. Controls include docking stations for e-bikes, station total capacity, distance to the closest cycleway, and the number of docking stations in a radius of 

300m (Density). Stations’ trend refers to a quadratic approximation in the outcome time trend by docking station. Cluster standard errors per docking station were applied. Significance levels 

are represented as follows: *p<0.1; **p<0.05; ***p<0.01. 
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Table A-3. Heterogenous effects 
 Dependent variable: 
 ln(Journeys) 
 During*Distance  After*Distance 

 Origin-station Destination-station  Origin-station Destination-station 
 (1) (2)  (3) (4) 

E-stations 0.060 0.063  0.032*** 0.035** 

 (0.051) (0.046)  (0.010) (0.016) 

S-stations 0.035*** 0.028***  0.009*** 0.005*** 

 (0.004) (0.006)  (0.001) (0.002) 

Low capacity 0.146*** 0.153***  0.048** 0.053*** 

 (0.030) (0.030)  (0.019) (0.014) 

High capacity 0.031*** 0.024***  0.008*** 0.004*** 

 (0.004) (0.003)  (0.001) (0.001) 

Cycleway nearby 0.079*** 0.091***  0.026** 0.025*** 

 (0.025) (0.027)  (0.010) (0.009) 

No cycleway nearby 0.033*** 0.023***  0.009*** 0.004*** 

 (0.004) (0.003)  (0.002) (0.001) 

Station’s density nearby 

One station 0.045* 0.033  0.054** 0.043*** 

 (0.025) (0.024)  (0.022) (0.016) 

> One station 0.036*** 0.031***  0.009*** 0.006*** 

 (0.005) (0.007)  (0.001) (0.002) 

> 3 stations 0.040 0.063*  0.018 0.029** 

 (0.039) (0.036)  (0.015) (0.014) 

> 9 stations -0.403 -0.472  -0.771 -0.078 

 (1.979) (1.040)  (0.960) (0.977) 

Stations FE Yes Yes  Yes Yes 

Week FE Yes Yes  Yes Yes 

Stations' trend Yes Yes  Yes Yes 

Note: The Table reports the estimated impacts of public transport disruption on bike-sharing adoption for different subpopulations of 

biking stations. Columns (1) and (3) refer to the estimates using the origin-station dataset only. Columns (2) and (4) refer to the 

estimates using the destination-station dataset only. Distance refers to the inverse of the planar distance between subway and docking 

stations. Low capacity includes stations for less than 23 docks and high capacity those above 24 docks (10 and 36 are the minimum 

and maximum capacity). Cycleway nearby are docking stations connected to dedicated bike lines by no more than 300m. Density of 

additional stations in a radius of 300m consider four different alternatives: stations that share the space with exactly one additional 

station, where there are more than one, three or nine stations nearby. Stations’ trend refers to a quadratic approximation in the outcome 

time trend by docking station. Cluster standard errors per docking station were applied. Significance levels are represented as follows: 

*p<0.1; **p<0.05; ***p<0.01. 
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Table A-4. Bike-sharing influence on subway ridership, alternative 

transformation of the independent variable 
 Dependent variable: 
 Subway ridership 

 Poisson 
 (1) (2) (3) (4) (5) 

ln(Bike ridership + 1)*During 0.121***     

 (0.024)     

ln(Bike ridership + 1)*After 0.032***     

 (0.006)     

ln(Substitutes + 1)*During  -0.072***    

  (0.014)    

ln(Substitutes + 1)*After  -0.018***    

  (0.005)    

ln(Complement + 1)*During   0.074***   

   (0.011)   

ln(Complement + 1)*After   0.031***   

   (0.003)   

ln(First-mile + 1)*During    0.071***  

    (0.013)  

ln(First-mile + 1)*After    0.035***  

    (0.003)  

ln(Last-mile + 1)*During     -0.028** 
     (0.014) 

ln(Last-mile + 1)*After     -0.010*** 
     (0.004) 

Controls Yes Yes Yes Yes Yes 

Fixed effects Yes Yes Yes Yes Yes 

Trend Yes Yes Yes Yes Yes 

Observations 6,403 6,403 6,403 6,403 6,403 

Log Likelihood (Mio.) -6.116 -6.151 -6.108 -6.135 -6.152 

Akaike Inf. Crit. (Mio.) 12.233 12.302 12.217 12.270 12.304 

Note: The Table reports the estimated impact of bike-sharing on subway ridership during and after 

disruption. The analysis is restricted to subway stations. Substitute journeys are defined as trips that 

start and end within the spatial coverage (300m) of the subway network. First and last-mile journeys 

are defined as trips that start/end beyond/within the spatial coverage (300m) of the subway and 

ends/starts within/beyond. Complementary journeys are bike trips that does not start nor end within the 

spatial coverage of the subway system. Controls and fixed effects included are new subscriptions, day 

of the week, month, density of docking station nearby, type subway station (transfer or intermediate 

station), district, zip code, distance to city downtown, distance to district downtown, and distance to 

closest cycleway. Trend refers to the outcome quadratic trend. Cluster standard errors at subway station 

are considered. Significance levels are represented as follows: *p<0.1; **p<0.05; ***p<0.01. 
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Abstract 

The auto-oriented paradigm that dominated urban transport during the last fifty years rose 

social and environmental concerns due to traffic congestion, local and global pollution, 

inequalities, and adverse health effects. In response, cities welcomed new micro-mobility 

services aiming to provide alternatives to reduce car-dependency, tackle travelers dilemmas, 

and improve accessibility while attaining economic growth. How to articulate these new 

services into a multimodal mobility system is an open debate in the literature far from over. 

This paper focuses on the introduction of dockless e-scooters in the city of Paris and the 

regulatory reforms that came along seeking to harmonize improper parking, considered for 

many as one of the most relevant drawbacks in the adoption and acceptance of this transport 

mode.  The case of Paris is of relevance because the city decided to reallocate public spaces 

to exclusively park e-scooters. Leveraging on the spatial relationship of parked e-scooters and 

the location of parking zones, this paper proposes Key Performance Indicators to evaluate the 

effects of parking regulations on users’ behavior and on the accessibility of e-scooters. We find 

that parking bays reduce cluttering and mis-parking, but, unintendedly, the regulation makes 

e-scooters less accessible to users by limiting pick-up and drop-off points. 
Keywords: Sharing-economy; E-scooters; Micro-mobility management; Big data analytics; Parking; 

Economic regulation. 

JEL classification: : L91, L98, O38, R48, R52. 



 

Page 90 

 

 

1. Introduction 

 

The auto-oriented paradigm that dominated urban transport during the last fifty years rose 

social and environmental concerns due to traffic congestion, local and global pollution, 

inequalities, and adverse health outcomes. In consequence, cities welcomed new micro-

mobility services aiming to provide alternatives for reducing car dependency (ITF, 2021; 

Asensio et al., 2022), tackle travelers dilemmas (Lesh, 2013; Shaheen & Chan, 2016), and 

improve accessibility (Shaheen & Cohen, 2019). Nevertheless, in most cases, these 

innovations were introduced without the proper regulatory framework preventing 

communities to capture all their potential hampering economic growth and development 

(Bąk, 2016; Gössling, 2020; Meng et al., 2020; Button et al., 2020). As a result, governments 

are issuing new rules, taking advantage of the digital revolution, in an effort to better 

integrate these new services with the rest of the mobility mix. 

 Dockless shared e-scooters (also referred to as e-scooters in free-floating) are a relative 

recent innovation for urban mobility where renters pick-up and drop-off vehicles at any 

location in the city within a predetermined geographic region. As any other micro-mobility 

service, this innovation enables users to have short term access to transport on an as-needed 

basis (Shaheen & Cohen, 2019). This mode of transport has been considered for many as an 

innovative alternative with potential to overcome the so-called first/last mile dilemma by 

improving accessibility to public transport and enhancing multimodal behavior (Shaheen & 

Chan, 2016; Baek et al., 2021). In fact, the 6t-bureau de recherche (2019) conducted a survey 

in France among e-scooters users with the objective of understanding travel patterns. They 

found that 23% of the trips were intermodal, i.e., users combine e-scooters with public 

transport (66% of the cases) and walking (16%). Similar results were obtained in other cities 

around the world (Eccarius & Lu, 2020; Laa & Leth, 2020). In addition, e-scooters have 

found an important demand across hundreds of cities worldwide and there is still a lot of 

potential for expansion. According to the Boston Consulting Group (2019), e-scooters will 

represent 15% of market share for automotive-based on-demand mobility by 2025 with a 

value between 40 to 50 billion dollars. Altogether, these conditions make dockless shared 

e-scooters an attractive mobility mode for cities to ease transport-related concerns. 

However, many have pointed out barriers in the provision of services that prevent cities 

to unlock all the benefits, especially in the absence of proper regulation (Button et al., 2020; 
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Meng et al., 2020). In the specific case of dockless e-scooters, mis-parking and cluttering 

(random parking) have been considered as the main drawbacks for public acceptance, which 

is closely related to less adoption and demand (Brown A. , 2021a; Brown et al., 2021b; 

Brown et al., 2020; Gössling, 2020; Button et al., 2020; Sobrino et al., 2023). The 

problematic is so crucial that many cities such as San Francisco, Barcelona, Miami, and, 

most recently, Paris have decided to ban e-scooters arguing that both, mis-parking and 

cluttering, interfere with the harmonization of transportation. Indeed, mis-parking imposes 

external costs on other users. For instance, parking on sidewalks might block the use of the 

public space to pedestrians. The trade-off raised by the introduction of e-scooters re-opened 

the debate about curb-space management (Shaheen & Cohen, 2019). Governments must 

rethink how to distribute public spaces among different users including those who walks, 

parks, or rides different types of vehicles. Echoing the words of Banister (2008), one must 

reconsider the concept of street as a space for people, green mobility, and public transport. 

This paper in particular focuses on the introduction of dockless shared e-scooters in the 

city of Paris and the regulatory reforms that came along seeking to harmonize improper 

parking and cluttering. It seeks to investigate the effectiveness of said regulations and 

potential unintended effects. The case of Paris is of relevance because the city decided to re-

distribute conventional parking zones to the exclusive use of e-scooters. In 2019, the city 

announced the construction of 2,514 parking bays (in the form of painted corrals) and 

amended the regulation to mandate users to drop-off e-scooters inside parking bays before 

completing their journey. However, the effects of such parking regulations are not evident, 

and, to the best of our knowledge, they have not been empirically assessed in the literature. 

The central hypothesis behind this work is twofold. On the one hand, parking bays are an 

effective measure to reduce cluttering and mis-parking improving the integration of this 

mode with the city’s transport system. On the other hand, parking bays might have 

unintended effects by limiting pick-up and drop-off points which concentrates vehicles in 

certain spots. First, parking bays might improve the spatial distribution of e-scooters across 

the city. Second, the regulation has a negative impact on the accessibility of vehicles. As 

noted by Brown, et al. (2020), providing infrastructure for micro-mobility parking increases 

predictability, safety, and access for all sidewalk travelers. In contrast, according to the 6t-

bureau de recherche (2019) users (63%) believe that these measures will decrease the 

frequency of use of e-scooters. 
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To empirically assess our hypothesis, we use an administrative database unique of its kind 

that geo-locates the whole fleet of e-scooters in the city of Paris. This big dataset observes 

parked vehicles before and after the regulations adopted in the city. We exploit this data 

base to compare the spatial relationship between vehicles and parking bays before and after 

their construction. First, we develop a Key Performance Indicator based on the Euclidean 

distance between vehicles and parking bays. At the end of 2019, before the regulation, the 

average distance between e-scooters and the virtual location of parking bays was close to 

100m, contrasting with a distance close to 20m after their implementation. This change 

represents a percentage decrease of almost 80%. Our finding proves that regulation in Paris 

have a positive effect harmonizing e-scooters by reducing cluttering. 

Accessibility of vehicles is a key question for the adoption of e-scooters. The 6t-bureau 

de recherche (2019) found that 59% of users have experienced a lack of vehicles nearby and 

24% have given up on the usage of this mode for that reason. In a similar study, Sanders, et 

al., (2020) surveyed 1,256 university staff in Tempe, AZ, to find that on average 40% of 

riders indicate "not being able to find one when needed" as a barrier to ride e-scooters. On 

top of that, this option was chosen more often among regular riders (45%). Therefore, to 

assess the effects of the regulation on accessibility, we exploit the location of parking bays 

to build maps (rasters) measuring the distance from any point in the city to the closest 

vehicle. Following the same direction, we create an index to compare the situation before 

and after the regulation. Our findings suggest that the average distance to find an e-scooter 

was about 180m before the construction of parking bays and 250m afterwards, a percentage 

increase of almost 40%. In other words, parking regulations in Paris had a negative effect 

on the accessibility of vehicles. Following a similar strategy, we develop a KPI to compare 

the concentrations of e-scooters across the city. The evidence documented here shows that 

regulations limit the concentration of vehicles ins specific regions of the city and improves 

the provision of the service in uncovered areas. Additionally, we provide a regional 

comparison among the 20 districts in Paris for all KPIs mentioned above. We found 

heterogeneous effects that might help authorities to better allocate resources to improve the 

provision of dockless e-scooters in the city. 

Finally, we go in more detail about mis-parking persistence, i.e., improper parking in the 

presence of parking infrastructure. We identify three types of users based on how close they 

park to the corresponding infrastructure. We find that regulation is effective incentivizing 
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users to comply with the rules. However, unlawful users, those who never follow the rules, 

still constitutes a significant share of riders (13% to 18%). furthermore, we develop an index 

to measure congestion in parking bays. The evidence suggests that congestion skyrocket in 

the last quarter of 2020, after the construction of parking bays. We find that almost 20% of 

the fleet-size parked in bays with exceeded capacity and that more than 30% of parking bays 

were overcrowded by the end of the year. The evidence shows no signs of deceleration. Our 

findings highlight the need for further research to better understand the determinants of mis-

parking persistence even in the presence of infrastructure. Parking is not only related with 

regulation, cultural behavior and cognitive biases might also be relevant (Ralph & Delbosc, 

2017). Therefore, taking into consideration each city context is important for researchers 

and policy makers to measure the effects of new rules. 

It is worth mentioning that, to the best of our knowledge, this is the first work that exploits 

this type of big data to study parking conditions of dockless micro-mobility modes. 

Furthermore, the methodology developed here represents a new framework to assess parking 

behavior not only for e-scooters but for any other type of mode with geo-localized 

information of vehicles such as bikes, cars, or mopeds. What is more, these methods are 

flexible, easily reproducible, and have many different applications in several contexts. It is 

also our interest to provide guidance for authorities to adapt our methodologies as smart-

regulatory tools to observe data-driven markets. 

The rest of this paper is organized as follows. Section 2 presents the related literature with 

a focus on the impact of regulation on dockless micro-mobility modes, as well as our 

contribution to this literature. The case of dockless e-scooters in Paris is presented in Section 

3. In Section 4 data and its limitations is presented. We provide relevant definitions and the 

construction of the Key Performance Indicators in Section 5. The main results are reported 

in Sections 6. Section 7 outlines the discussion and Section 8 concludes. 

 

2. Related literature 

 

Studying parking, especially for cars, has a long tradition in transport and economic 

science.1 This trend in the literature has focused mainly on the economics aspects of parking 

 
1 See Inci (2015) for a compelling review. 
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such as price, quantity, and how market failures should be addressed to improve social 

welfare. However, new mobility modes have challenged this view by demanding a 

redistribution of the public space to operate. Nevertheless, despite the growth rate of shared 

micro-mobility services, the academic literature is falling behind, and more research urges 

to address recent challenges in urban mobility (Button et al., 2020). 

While some shared micro-mobility modes, such as bike-sharing, have received a relative 

extensive attention in the literature (DeMaio, 2009), dockless e-scooters are still a minor 

topic despite their extensive adoption and potential to ease transport-related concerns. One 

reason is because datasets are not widely available yet. The literature on dockless e-scooters 

falls in three categories: studies about users demand and behavior (Nikiforiadis et al., 2021; 

McKenzie, 2020; Younes et al., 2020; Laa & Leth, 2020; Sanders et al., 2020; Eccarius & 

Lu, 2020), mode choice and competition (Reck et al., 2021; Baek et al., 2021; Krier et al., 

2021; Aarhaug et al., 2023), and social concerns and public intervention. Our paper 

contributes to the latter strand as we aim to address the effects of parking regulations. 

The studies of Aarhaug et al. (2023) and Sobrino et al. (2023) discuss the need to 

accompany the introduction of dockless e-scooters with proper regulations to better integrate 

them with the existent transport system and meet specific public concerns. Gössling (2020) 

identifies what are the major social concerns before and after the introduction of this 

mobility mode in ten different cities including Paris. After collecting and analyzing 

information of news reports available online, the author finds that, the introduction of e-

scooters raises concerns among citizens related with conflicts over space (including parking 

and riding), speed, and safety. Moreover, his findings suggest that more negative media 

headlines were published in cities where e-scooters were allowed without proper rules.  

It is worth mentioning that, in contrast to conventional transport modes, two levels of mis-

parking have been identified for e-scooters: improper parking and cluttering. The former 

comprises practices that block or reduce access to other road or sidewalk users (Brown et 

al., 2020). Notably, this term is mostly used to describe how vehicles are parked 

individually. Cluttering, in contrast, defines a disorganized distribution of parked vehicles 

across the city. This definition has been borrowed from the language-hearing science where 

cluttering is a syndrome characterized by an unclear and/or disorganized speech.2 The 

literature very often treats both levels of mis-parking as synonyms mainly because they are 

 
2 See Ward (2017) for more details. 
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intrinsically related (e.g., a cluttered distribution of vehicles gives the idea of improper 

parking). Therefore, parking regulations for a better curb-space redistribution, such as 

dedicated parking zones, might improve cluttering and improper parking by limiting the 

space dedicated to pick-up and drop-off vehicles without interfering with other users. 

This paper is informative about the current level of mis-parking in the broad sense, i.e., 

improper parking and cluttering. Brown, et al. (2020) provide empirical evidence to compare 

improper parking between different mobility modes including dockless e-scooters. They 

collected in-field data during three days from five US cities with a large micro-mobility mix 

in streets with high levels of transport activity. The authors find that improper parking 

among e-scooters happened in only 1.7% of the cases, which is relatively low compared to 

motor vehicles (24.7%).  Although this study does not address the problem of cluttering, it 

discusses the relevance of providing infrastructure for micro-mobility parking to reduce mis-

parking in general terms. 

In addition, our work provides empirical evidence about the efficiency of recent 

regulations to address mis-parking. Moran, et al. (2020) study operators’ responses to 

parking regulations in the city of Vienna. The municipal authorities clarified in 2019 their 

rules to defined where e-scooter may or may not be ridden and parked. Operators responded 

by designing virtual no-parking zones in the form of geofences. The authors track those 

zones among six operators once a week over 3 months. They find that no-parking zones vary 

significantly by operator mainly because the regulation did not clarify the spatial coverage 

of the service. Our paper differs from the work by Moran, et al. (2020) first, because they 

focus on responses from the supply-side (we focus mainly on users’ behavior) and second, 

because we provide robust empirical evidence using observational data with a high spatial 

and time coverage. Many other studies review different parking policies around the world; 

however, they do not discuss their effectiveness to accomplish their goals (Brown A. , 

2021a; Shaheen & Cohen, 2019). 

Finally, we seek to fill a gap in the literature related with the unintended effects to parking 

regulations. First, parking rules may be detrimental for the adoption of the service by 

limiting pick-up and drop-off points; a topic closely related with the substitution of public 

spaces and curb-side management. There are few studies in this direction (Sanders et al., 

2020; 6t-bureau de recherche, 2019), however the evidence is currently either restricted to 

stated preferences or limited by the low spatial extension and time depth of the collected 
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dataset. It is important to highlight that this negative effect could be attenuated if new rules 

improve the integration the services with the transport system, a trade-off that, in our 

opinion, deserves further attention in the literature. Second, even in the presence of the 

proper rules, mis-parking behavior might persist among certain riders. As noted by Brown, 

et al. (2021b) a lack of knowledge or understanding of parking rules are relevant to 

incentivize proper parking. Other characteristics might also be relevant such as the cultural 

context, cognitive biases, land use, geography, access to other transport modes, 

demographics, among others. Therefore, a more detailed analysis to understand the 

conditions that determine mis-parking is suitable to evolve regulatory frameworks. 

 

3. Case Study: Paris City  

 

Dockless e-scooters circulated the Parisian streets for the first time in the summer of 2018. 

Initially twelve operators had permits to deployed vehicles in the city and the fleet size was 

close to 20,000 vehicles in total. They were not introduced without controversy. Some 

argued in favor of clean and ludic alternatives to commute to ease transport-related 

concerns. Others highlighted the chaos and the lack of security mainly caused by 

irresponsible riding, mis-parking, and vandalism (Gössling, 2020; Dezobry et al., 2020). 

In response, the city implemented a plan to harmonize the service with the rest of the 

mobility mix. First, in April 2019, the city announced the construction of 2,514 parking bays 

(in the form of painted corrals) for the exclusive use of e-scooters. According to the 

authorities, half were built the last months of 2019 and the rest during 2020. Moreover, 

parking bays were located so that the average distance between them did not exceed 150m 

and with a capacity equal to fleet size. 

Moreover, in July (Arrêté No 2019 P 16391) and October 2019 (Décret No 20191082) 

the city issued a series of reforms to clarify the regulatory framework related to micro-

mobility. These reforms determined, among other things, the rules to park e-scooters in 

public spaces and the type of data that the city will collect from operators. The new 

regulatory framework mandates that parking e-scooters outside designated zones is 

forbidden. Moreover, the decree was issued to establish the technical characteristics and 

rules to ride micro-mobility vehicles powered by non-thermic engines (or Engins de 

Déplacement Personnel Motorisé in French). At a national scale, France issued in December 
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2019 the Law of Mobility Orientation (or Loi d’Orientation des Mobilités in French) as a 

response of the challenges imposed by the ecologic transition in the transport sector. 

Regarding the specific case of dockless mobility, the Law provides the issuance of permits 

to operators to deploy transport services in a non-discriminatory manner after request to the 

local authorities. 

Subsequently, in July 2020, after a public tender, the city granted permits to Lime, Dott, 

and Tier to operate 5,000 e-scooters each for the next three years. Winners were selected on 

the promise of implementing sustainable and environmentally responsible business 

practices, improving user safety, and their ability to manage maintenance, removal, and mis-

parking of e-scooters (Sands, 2020). Altogether, public response represents the first 

regulatory framework to incorporate dockless micro-mobility modes into the multimodal 

transport environment in the city of Paris. This work seeks to assess the overall effects of 

these rules, notably those related to enhance parking behavior. 

Also noteworthy is the relevance of e-scooters in comparison with the rest of the mobility 

mix in the city, notably with respect to other micro-mobility services. Dockless shared e-

scooters are similar to the station-based bike-sharing system in Paris called Vélib’, the most 

important micro-mobility services in the city. Vélib’ operates 1,400 stations and 20,000 

bicycles (40% of them are electric). From the perspective of demand, dockless e-scooters 

found recognition among Parisians. In September 2020, the month where the demand for 

micro-mobility attained its historic maximum, Vélib’ made on average 180,000 daily 

journeys (Vélib' Metropole, 2022), meanwhile 30,000 journeys were made using e-scooters 

(L'institut Paris Region, 2022). Finally, regarding the market for dockless mobility, e-

scooters are the leaders with a share equal to 53% in 2020 and 59% in 2021. They are 

followed by mopeds (38%), bikes (6%), and cars (3%) (L'institut Paris Region, 2022). The 

case of Paris is also relevant at international level. As a matter of fact, Paris is one of the 

cities with the largest density of e-scooters in Europe per inhabitant with 6.9 vehicles per 

1000 people. In comparison with other European capitals, the figures in Berlin and Brussels 

are 3.0 and 2.6 vehicles per 1000 people, respectively. What is more, the number of e-

scooters in Paris is competitive even against cities less densely populated like Stockholm 

and Oslo (11.2 and 11.7 vehicles per 1000 people each) (Civity, 2019). 

Despite the demand that e-scooters fund in the city and authorities’ effort to harmonize 

the service with the transport system, the debate regarding misuse and security intensified 
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due to congestion in parking bays and deadly accidents. Consequently, the city of Paris 

organized a referendum for citizens to decide whether to renovate e-scooters permits to 

circulate. On April 2nd, 2023, with an overwhelming majority of votes (89%), citizens 

decided to ban the circulation of e-scooters (Ville de Paris, 2023). The referendum did not 

happen without controversy either. For instance, only inhabitants of the city where allow to 

vote even if e-scooter were often used by citizens in the close neighborhoods. Additionally, 

the referendum showed a low participation with a turnout rate of less than 7.5% (Ville de 

Paris, 2023). Furthermore, according to the operators, only 33% of the young population 

(between 18 to 24 years old) were aware of the referendum in contrast to the 77% of adults 

(between 50 to 64 years old) (Le Monde, 2023).  

In summary, studying the case of Paris is relevant for the following reasons. First, e-

scooters are a relevant mobility mode in urban cores, and they proved to be competitive with 

respect to other modes including the station-based bike-sharing models. Second, the Parisian 

case became an international benchmark especially in Europe. Third, authorities have 

intervened to regulate parking conditions in the city. This is turn allow us to compare the 

scenario before and after regulation to assess the effectiveness of the regulations and its 

potential unintended effects. Fourth, even though e-scooters will no longer circulate the 

streets of Paris, studying in deep this case will help other cities to design and assess better 

regulatory frameworks that facilitates the integration of e-scooters with the existent 

transport system and to catchup with the technological innovation.  

 

4. Data 

 

To investigate the effects of parking regulations in Paris, we use an original administrative 

dataset that geo-locates dockless e-scooters in the city. Following the corresponding 

regulations, operators are obliged to report daily the status and location of each vehicle with 

a frequency of three hours starting at 01:00hrs. Our dataset includes observations collected 

from August 2019 to December 2020. Vehicle’s status includes the following: parking, 

riding, and not operational (out of service or in maintenance). On average, almost 12,000 

vehicles are deployed every day in the city from which 92% are parked, 3% riding, and 5% 

not operational. Nevertheless, the number of riding vehicles might not reflect the true 

demand of dockless e-scooters due to the low frequency in the collection of data. 
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Regarding evolution over time, Figure 1 reports the daily average of the fleet size by status 

over time. Note that this Figure reveals an important variation in the number of parked 

vehicles in short periods of time. The maximum value observed was close to 17,000 attained 

in December 2019 (before the reduction in the number of permits and flee-size). The minim 

value is hard to estimate because of the global pandemic. The Figure also reveals that the 

number of riding and not operational vehicles remained more stable over time. 

 

Figure 1. Fleet size over time by e-scooter status 

 
Note: The Figure reports the evolution in the daily number of dockless e-scooters in the city of Paris by status. 

Dark lines show a smoothed patter applying the Locally Estimated Scatterplot Smoothing (LOESS) function. 

Nok refers to not-operational vehicles, i.e., those that are out of service or in maintenance. A blank space is 

intentionally introduced to identify the first national lock-down after the global pandemic. 

 

Regarding dedicated parking zones, the geographical information of the polygons 

representing parking bays was collected from the city’s open data website. The city 

constructed a total of 2,514 parking bays, which account for a surface close to 25,600m2. It 

is noteworthy to mention that this amount of public space was designated to allocate the 

whole fleet (15,000 e-scooters) assigning to each vehicle an individual space of 1.7m2. In 

addition, the average distance between parking bays is 141m in line with what the city 

announced before the implementation of the policy (150m). Nonetheless, there is no 

information available on the exact date of construction of each bay. In consequence, the 

empirical evidence that we present here focuses more on the before-after comparison (by 

comparing the initial situation in mid-2019 to the scenario by the end of 2020) than on the 

dynamics itself. 



 

Page 100 

 

 

Using this type of data for dockless micro-mobility studies is, to the best of our 

knowledge, a novelty. Many studies are restricted to the collection of data requesting 

information to APIs provided by operators. Although those formats have potential for 

further research, it usually needs to request information in high frequencies (each 1-5 

minutes) to extract reliable information about the location and status of the vehicle. 

Consequently, the amount of computational resources oblige researchers to restrict the 

analysis to short periods of time (2-3 months). This in turn limits the possibility to capture 

changes in regulatory frameworks. In other cases, studies are restricted to the information 

available by a subsample in the number of operators or e-scooters. The data we use here is 

original and rich because it observes all the operators active in the market and because it 

covers large time and space span. However, working with a big dataset (45 million 

observations) with these characteristics required the programming of tools and models. 

Programs were coded to automatically clean and set-up hourly datasets, creates variables, 

compute indicators (see section 5), optimize memory use, and export the results for further 

analysis. Every dataset has flaws and ours is not the exception. The next paragraphs describe 

the limits to our data that we detected and how we addressed them. 

GPS inaccuracies. Dockless e-scooters are provided with GPS devices to facilitate their 

location. Users use this information to locate e-scooters using their smart phones and 

operators can track locations while parking and riding. The same devices are used to report 

their location and status following the authority’s mandate. However, GPSs are subject to 

inaccuracies due to different causes such as connectivity issues, limited resolution for angle 

measurements, noise, issues with the communications network, among others. These 

inaccuracies, properly referred to as User Equivalent Range Error (UERE), introduce 

uncertainties to the exact position of e-scooters. According to the European Space Agency, 

the UERE for Standard Positioning Services (SPS) ranges in between 7 and 33 meters. 

Nevertheless, we developed a methodology to infer confidence intervals from the data, 

which takes into consideration specific geographic characteristic of the city (see Appendix 

A for details). We concluded that a tolerance of 30 meters is a reasonably good range error 

in the case of e-scooters in Paris. 

Normalization. Variations in the fleet size invalidates the comparison of different spatial 

measures over time (see Figure 1). A clear example of this is the minimum distance between 

a predetermined point (𝑥0, 𝑦0) and 𝑁 different points located at random inside a cell of fixed 



 

Page 101 

 

 

size. In fact, the minimum distance will converge to zero when the number of points growths 

to the infinite at decrease rate of  (2√𝑁)
−1

 (see the proof in Appendix B). The case of e-

scooters in the city is the same, if we measure the distance from vehicles to the city center, 

we will observe variations as function of the number of vehicles deployed in the city. To 

avoid volume effects due to daily variations in the fleet size, we normalize our measures by 

a factor equal to (2√𝑁)
−1

. 

 

5. Methodology 

 

5.1  Definitions 

 

Mis-parking. For the purpose of this work, we approach mis-parking in the sense of 

cluttering. As we mentioned above, two types of mis-parking have been identified in the 

literature: improper parking and cluttering (Gössling, 2020; Brown et al., 2020). The former 

describes how vehicles are parked individually and the latter is used to describe a 

disorganized distribution of parked vehicles across the city. As noticed, our dataset does not 

observe improper parking at vehicle level. In contrast, the dataset allows the assessment of 

a cluttered distribution of e-scooters in a predetermined geographic region. Nonetheless, by 

studying the spatial relationship between parking bays and e-scooters we can provide 

insights about improper parking in the sense of compliance with the existing regulation. In 

other words, we could infer whether an e-scooter is properly parked by comparing its 

location and the location of parking bays. 

Accessibility. Many definitions of accessibility exist in the transport literature (Páez et 

al., 2012). In this paper, we define it as the distance that any user must travel to find the 

closest e-scooter. This definition goes in line with the first/last mile dilemma; following 

Lesh (2013), any mobility mode is inconvenient when the starting or endings points are 

located beyond a comfortable distance for the user. Defining accessibility in the way we do 

here is convenient because dockless e-scooters are characterized by the possibility to pick-

up and drop-off vehicles at any location in the city using smart technology. In other words, 

e-scooters are accessible to users without the need of docking stations (as it is the case in 

the station-based bike-sharing system). Therefore, the distribution of e-scooters across the 

city is crucial for users to find them when they need them (Sanders et al., 2020).  



 

Page 102 

 

 

Distance-decay function. We estimate a distance-decay function to study the evolution 

of mis-parking behavior over time. It describes the relationship between the distance from 

an e-scooter to the location of the closest parking bay. In other words, it determines the 

likelihood that a user chooses to park inside parking bays. We use the location of e-scooters 

during the second week of December 2020 when the distance to parking bays reached its 

minimum value. Using this period allows us to estimate a decay-function that describes a 

scenario where parking bays and rules are being implemented. To estimate moments of the 

distance-decay distribution, we fit a log-normal-decay probability density function using 

nonlinear weighted least-squares.3 The results are documented in Figure 2. The estimated 

distance-decay function has expected mean of 17.3m and variance 210.3. 

Type of users. We identify three different types of users depending on their level of 

compliance with parking regulations: 

• Complier. Always comply with the rules regardless of the number of parking bays 

and the distance with respect to destination. 

• Opportunistic. Any user that parks properly only when parking bays are close to 

their destination. Otherwise, they mis-park. 

• Unlawful. Never follows the rules regardless of the number and location of parking 

bays. 

Following the principles of asymmetric information, the fundamental problem to study 

users’ behavior is that their type is private information: each user knows their own type at 

the beginning of the trip and the information is revealed only when the trip is completed. 

Using the geo-location of parked e-scooters, presumably at the end of users’ journeys, and 

their spatial relationship with parking bays, we obtain information about users’ type. 

Afterwards, we use this information to provide insights about the effects of regulations on 

the level of users’ compliance related with their types. 

 

 
3 We use a lognormal-decay function of the form: 

 

𝐷(𝑥) =  
1

𝑥𝜎√2𝜋
exp (−

(ln 𝑥 − 𝜇)2

2𝜎2
) 

 

Where 𝑥 is the observed distance between e-scooters and parking bays. The parameters to estimate are 𝜎 and 

𝜇. It is important to point out that a lognormal distribution has expected value 𝐸(𝑥) = 𝑒𝑥𝑝 (𝜇 +
𝜎2

2
) and 

variance 𝑉𝑎𝑟(𝑥) = [exp(𝜎2) − 1]exp (2𝜇 + 𝜎2). 
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Figure 2. Distance-decay function 

 
Note: The Figure reports the number of additional e-scooters by the size of the buffer around 

parking bays. Points describes the kernel density of the observed distribution. The solid curve 

in blue is the estimated lognormal-distance-decay probability density function of the form 

𝐷(𝑥) =  
1

𝑥𝜎√2𝜋
exp (−

(ln 𝑥−𝜇)2

2𝜎2
). The parameters of the model were estimated using nonlinear 

weighted least-squares. The estimated parameters are 𝜇 =  2.58 and 𝜎 = 0.732  , resulting in 

an estimated expected value of 𝐸(𝑥) = 17.3 and variance  𝑉𝑎𝑟(𝑥) = 210.3. 
 

5.2  Spatial analysis 

 

As mentioned above, this paper is based on the spatial relationship between vehicles and 

parking bays. The treatment of the data follows two different approaches: vector and rasters. 

Vector data allows to study the relationship between attributes of different features such as 

points (e.g., e-scooters location) and polygons (e.g., parking bays). Following this approach, 

we developed different Key Performance Indicators (KPIs) based on the geographical 

attributes of e-scooters and parking bays. To study the evolution of such KPIs, it is important 

to recall that parking bays were constructed at the end of 2019 and at the beginning of 2020. 

Therefore, we use the virtual location of parking bays, i.e., as if there were already built, in 

the construction of KPIs.  

Raster data instead is defined as a collection of cells (or pixels) in the form of grids 

representing specific geographical regions. Each cell in the raster stores real-world 

information such as elevation, distance, etc. For the purpose of this paper, we produce high 

resolution rasters with cell size of 2 x 2 meters. Every raster was snapped (aligned cells) and 

masked (crop to the same extension) to a basic raster that covers a surface equal to the city 

extension. This last step is important to produce valid comparisons over time. 
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Figure 3. Spatial coverage and groups of districts 

 

Note: The map reports the spatial coverage used in this analysis. Dashed line determines the 

extension of the analysis at the aggregate level. It covers an extension equal to 1km away from the 

last parking bay available at any direction in the city. Numbers are used to identified districts’ 

names in Paris (1st district, 2nd district etc.). As noticed, the extension in districts 12th and 16th is 

larger than the city spatial coverage. This is because those areas are mainly forests and no parking 

bay has been constructed there. Moreover, it is not common to observed e-scooters parked in those 

areas. 

 

Regarding the spatial coverages of this work, we provided empirical evidence at city and 

district level. See Figure 3 for a visual description. E-scooters’ operators have permits to 

deploy vehicles within the boundaries of Paris City (In French: La Ville de Paris) and its 20 

districts. In consequence, the 2,514 parking bays are also confined within the same 

boundaries. Therefore, our analysis covers a surface up to 1km away from the farthest 

parking bay in every direction of the city. Regarding the district comparison, we have 

grouped the 20 Parisian districts in four big groups based on the geographical and economic 

characteristics of the city. The inner-west includes districts 1st, 2nd, and 6th; inner-east 

includes districts 3rd, 4th, and 5th; outer-west comprises districts 7th to 9th and 15th to 18th; 

outer-east the rest. 
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5.3  Key Performance Indicators 

 

We evaluate the efficiency of parking regulations and unintended effects through a set of 

KPIs developed using the spatial relationship between perked e-scooters and parking bays.  

Planar distance to parking bays. Based on vector data, this indicator measures the 

Euclidean distance between parked e-scooters and parking bays and its evolution over time. 

First, we compute the distance for every e-scooter in the database. Then, we compute the 

mean to obtain an hourly panorama of the relationship between parking bays and e-scooters 

(remember that the location of e-scooters is available in a frequency of three hours). 

Afterwards, daily averages are obtained. Moreover, to provide comparable measures over 

time, we normalize every hourly mean using the methodology developed in Appendix B. 

The expected evolution of this KPI is the following: if parking regulations are effective, 

then the average distance between parking bays and e-scooters should decrease precisely 

because dedicated zones are concentrating vehicles in specific points. 

Demand for parking bays. Following the same logic as before, if the concentration is 

happening after new regulations, then the surface (or the space) delimited by such parking 

bays should be demanded more often. In other words, we expect to see more e-scooters 

parking inside dedicated parking bays. To capture this performance, we defined a 

dichotomic variable equal to one if the space delimited by parking bays had at least one e-

scooter in the near vicinity. Therefore, after computing the daily average as we did before, 

this KPI measures the evolution in the share of parking bays in use. As noticed, defining the 

vicinity is crucial to correctly classify parking bays. Using the results from the analysis of 

GPS inaccuracies (see Appendix A for details), we show three degrees of spatial tolerance 

to determine vicinity boundaries: 10, 20, and 30 meters around parking bays. 

Mis-parking. To assess the evolution of mis-parking in the city, we have classified e-

scooters using the moments from the distance-decay function defined above: 

A. Properly parked. If the distance to the closest parking bay is lower than the mean 

from the distance-decay function, i.e., when 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 <  𝐸(𝑥) = 20𝑚. 

Regarding the type of users, we expect this classification to be mainly composed 

by compliers and opportunistic users. 

B. Mis-parked when parking bay nearby. If the distance to closest parking bay is 

larger than the mean and lower than the mean plus two times the standard 
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deviation, i.e., when 𝐸(𝑥) = 17.3𝑚 < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 <  𝐸(𝑥) + 2𝑆𝐷 = 46.3𝑚. This 

behavior is characteristic of unlawful users. We could expect to also observe 

opportunistic riders, but to a lower extend.  

C. Mis-parked when no parking bay nearby. When the distance to closest parking 

bay is above the mean plus two times the standard deviation, i.e., when 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 >  𝐸(𝑥) +  2𝑆𝐷 = 46.3𝑚. This class should comprise unlawful and 

opportunistic users. 

For the construction of this KPI we compute the daily share of e-scooters in each 

classification. Two types of conclusions can be obtained from this indicator. First, the share 

of properly parked vehicles is an additional indicator of how effective the regulations have 

been harmonizing parking behavior. On the other hand, separating the share of mis-parking 

as we do here help to disentangle what type of users are not complying with the regulation. 

For instance, if the share of Mis-parked when parking bay nearby is high, then more 

resources should be focused to better understand unlawful behavior. On the other hand, if 

the share of Mis-parked when no parking bay nearby is high, this could indicate that more 

infrastructure is needed to incentivize opportunistic users to comply with the rules. Overall, 

this KPI helps to identify flaws in the regulation that can be ameliorated in the future. 

Congestion in parking bays. One of the most crucial unintended effects of parking 

regulations in Paris is related with congestion, i.e., with the excessive accumulation of 

vehicles in each parking bay. To assess congestion, we first measure the maximum capacity 

of each parking bay. According to the regulation, the 2,514 parking zones were designed to 

allocate exactly 15,000 e-scooters, thus, each vehicle occupy 1.7m2. Afterwards, we 

compute the maximum capacity of each parking by dividing its surface over 1.7m2. Finally, 

we compute the following two indexes: 

• Shared of congested parking bays: Number of parking bays with exceeded capacity 

over the total number of parking bays. In other words, it is the number of parking 

bays with at least one vehicle above its capacity. 

• Share of e-scooter overcrowding parking bays: In this case, we count the number of 

e-scooters exceeding the capacity of parking bays as a share of the daily fleet-size. 

As above, we compute the indexes by observed hour to compute daily averages and we 

show the evolution over time. Considering the sequences of events, notably the arguments 
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behind the referendum, we expect to see an increase in both indexes along the period of 

study. 

Planar distance to closest e-scooter. This indicator was constructed using raster data as 

follows. Every time the information is collected, we create a raster (with the same 

characteristics as the basic raster described in section 5.2 ) with cells’ value equal to the 

planar distance to the closest e-scooter. Then, we compute the arithmetic mean using all the 

cells in the raster. Afterwards, to account for variations in the number of observations in 

different points in time, this value is scaled dividing by two times the square root of the 

number of parking vehicles (see Appendix B for details). Finally, we compute daily 

averages. Using this KPI, we expect to capture the unintended effects of regulations on 

accessibility. If parking bays effectively concentrates e-scooters in specific points, then the 

average distance to find an e-scooter should be distorted depending on the number and 

location of parking bays. In the case of Paris, we expect to see an increase in this indicator 

because parking bays were built without a careful assessment of this potential effect. 

Spatial distribution of vehicles. This indicator was constructed using raster data as well. 

The main idea behind the indicator is to assess if parking regulations had an effect on the 

spatial distribution of parked e-scooters in the city. To this end, we estimate a two-

dimensional Kernel Density raster with the same spatial characteristics as the basic raster 

described in section 5.2 . Each cell in the raster measures the number of e-scooters within a 

predefined radius. We compute one raster every three hours (the frequency of observations 

in the dataset). Each resulting raster is normalized using the min-max methodology. This 

normalization allowed us to create a raster representing the density monthly average, for 

August 2019 and December 2020. These rasters represent the scenario before and after 

parking regulations. Afterwards, following McKenzie (2020), only the values above the 

core (arithmetic mean) in each raster are kept. As the author suggests, this mechanism 

allows the comparison between both rasters ignoring the effect of volume, i.e., the number 

of e-scooters in the city. Finally, to visually inspect the impact of the regulation, we 

produced a raster with the difference between the two. In addition, it is possible to study the 

distribution of all the values in this final raster. For instance, a leptokurtic non-skewed 

distribution with mean equal to zero would indicate that the spatial density distribution of 

e-scooters in December 2020 is similar to that in August 2019. In this case, we do not expect 
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to find any difference between the two scenarios because parking regulations should not 

impact user’s travel behavior in terms of routing and destinations. 

It is important to mention that every KPI developed here can be produced at different 

levels of spatial coverage. In this paper, we show the results at aggregate level covering the 

whole City of Paris and at a different regional level: for the 20 Parisian district or for four 

different groups of districts (see Figure 3 for details). 

 

6. Results 

 

6.1  Overall impact of parking regulations 

 

Parking regulations in Paris had a positive effect on harmonizing dockless e-scooters in the 

city. Figure 4 shows the evolution of the daily average distance over the whole timespan 

normalized by the daily fleet size. The dark line shows a smoothed curve using LOESS. 

During the first national lock-down, consequence of the global pandemic, the provision of 

the service was interrupted resulting in a considerably low number of vehicles deployed in 

the city. Therefore, to avoid presenting misleading results, we dropped those observations 

which is reflected as a blank space in the time-series. The evolution of this KPI shows that 

the average distance between e-scooters and parking bays decreased considerably after the 

implementation of the regulation: in August 2019, the average distance was close to 100m 

(0.5 after normalization), once they were all built in December 2020 this value falls to 

around 20m (0.08 after normalization) which represents a percentage decrease of 80%. 

Overall, the evolution of this measure shows that the policy has been effective in 

harmonizing dockless e-scooters in terms of mis-parking. 

Another way to assess the policy is studying the demand for parking bays. As observed 

in Figure 5, the evolution of this index goes in line with the previous KPI and with a positive 

effect of parking regulations. Considering a spatial tolerance of 30 meters (see Appendix A 

for a discussion about GPS accuracy), in August 2019 close to 25% of the space later used 

for parking bays had at least one vehicle inside raising up to almost 85% after their 

construction (60 pp. increase). In terms of coverage, in December 2020 parking bays 

allocated almost 85% of the fleet size. Note that this KPI could be capturing a random 

distribution of e-scooters in the city. To account for this caveat, we compare the evolution 
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in the demand for parking bays between parked and non-parked (riding and not operational) 

e-scooters. If the evolution of this measure is related with the concentration of vehicles due 

to the construction of parking bays and not with the random spatial distribution, then the 

demand for parking bays for riding e-scooters must not change over time. This assumption 

is supported by the data as one might notice in Figure 6. 

 

Figure 4. Normalized distance between e-scooters and parking bays over time 

 
Note: The Figure reports the evolution in the distance from e-scooters to the closest parking bay normalized by 

the fleet size. For further details about normalization, please see Appendix B. Dark lines show a smoothed 

patter applying the Locally Estimated Scatterplot Smoothing (LOESS) function. A blank space is intentionally 

introduced to identify the first national lock-down after the global pandemic. 

 

Additionally, we study the impact of parking regulations at district level. As mentioned 

above, time-series were built for four different district groups. Figure 7 shows the results 

for the planar distance between parking bays and e-scooters during the entire period of study. 

Moreover, to improve visualization,  

Figure 8 restricts the period shown from October 2020 to December 2020. As noticed, the 

distance between parking bays and e-scooters follows a similar behavior in all four district 

groups. Furthermore, after comparing the levels, the evidence suggest that the regulation 

was effective homogenizing the behavior across regions achieving a convergence in terms 

of KPI performance. Note that in October 2020 (and in all previous months) there was a 

clear difference across districts. It is clear from  

Figure 8 that e-scooters in the outer-east region were dropped-off farer away from parking 

bays than in the outer-west regions, which demonstrate a better performance. On the 
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contrary, at the end of December 2020, three groups converged to the same level of 

performance, but still slightly higher than the indicator from the outer-west region. 

 

Figure 5. Demand for parking bays over time 

 
Note: The Figure reports the number of parking bays with at least one e-scooter within, measured as a share of 

the total number of parking bays. Spatial tolerance refers to the size of the buffer used to expand parking bays 

surface to account for potential GPS inaccuracy. For further details about GPS inaccuracy, please see Appendix 

A. Dark lines show a smoothed patter applying the Locally Estimated Scatterplot Smoothing (LOESS) function. 

A blank space is intentionally introduced to identify the first national lock-down after the global pandemic. 

 

 

Figure 6. Demand for parking bays over time, parked vs. not parked e-scooters 
Twenty meters of spatial tolerance 

 
Note: The Figure reports the number of parking bays with at least one e-scooter within by status, measured as 

a share of the total number of parking bays. The status Not parked includes those in use (riding) and not 

operational (nok), i.e., out of service or in maintenance. A Spatial tolerance refers to the size of the buffer used 

to expand parking bays surface to account for potential GPS inaccuracy. For further details about GPS 

inaccuracy, please see Appendix A. Dark lines show a smoothed patter applying the Locally Estimated 

Scatterplot Smoothing (LOESS) function. A blank space is intentionally introduced to identify the first national 

lock-down after the global pandemic. 



 

Page 111 

 

 

 

 

 

Figure 7. Distance between e-scooters and parking bays by district groups 
August 2019 to December 2020 

 
Note: The Figure reports the evolution in the distance from e-scooters to the closest parking bay by groups of 

districts. The values shown are normalized by the fleet size. For further details about normalization, please see 

Appendix B. Dark lines show a smoothed patter applying the Locally Estimated Scatterplot Smoothing 

(LOESS) function. A blank space is intentionally introduced to identify the first national lock-down after the 

global pandemic. 

 

Figure 8. Distance between e-scooters and parking bays by district groups 
October 2020 to December 2020 

 
Note: The Figure reports the evolution in the distance from e-scooters to the closest parking bay by groups of 

districts in the fourth quarter of 2020. The values shown are normalized by the fleet size. For further details 

about normalization, please see Appendix B. Dark lines show a smoothed patter applying the Locally Estimated 

Scatterplot Smoothing (LOESS) function. A blank space is intentionally introduced to identify the first national 

lock-down after the global pandemic. 
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Finally, to provide insights about the heterogeneities among the twenty Parisian districts, 

we compute the monthly average of the normalized distance between e-scooters and parking 

bays in December 2020 (after regulation) per district. Afterwards, we display the results in 

the form of a map. The results are reported in Figure 9. It is clear from this analysis that 

there are some disparities across districts. For instance, it is noteworthy that all southern 

districts performed better than the northern ones except the fourteen district. This result is 

relevant to detect areas of improvement for future interventions. 

 

Figure 9. District heterogeneities in the distance between 

e-scooters and parking bays, December 2020 

 
Note: The map reports the average distance from e-scooters to parking bays in 

December 2020 by district. The values shown are normalized by the fleet size. 

For further details about normalization, please see Appendix B. Numbers are 

used to identified districts’ names in Paris (1st district, 2nd district etc.).   

 

6.2  Assessment of mis-parking 

 

In this section we present evidence about the effects of parking regulations on mis-parking. 

In other words, we study the evolution over time on the classification of parked e-scooters 

as a function of the distance between the location of the drop-off point and the closest 

parking bay. Figure 10 shows the daily average share of the three classifications of e-

scooters over time. The Figure clearly shows a re-composition in the share of vehicles across 

classes, especially after September 2020, i.e., after ending the construction of parking bays.  



 

Page 113 

 

 

The main findings after analyzing this KPI are the following. First, the regulation has 

been effective incentivizing opportunistic users to comply with the rules. As we mentioned 

above, we have conjectured that opportunistic users should be distributed across classes A 

and C, properly parked and mis-parked when no parking bay nearby respectively. As 

noticed in Figure 10, the share of class C e-scooters passed from 55% in September 2020 to 

less than 10% at the end of December 2020. Nevertheless 10% still represents a considerable 

number of vehicles that deserves further attention. As a matter of fact, the performance of 

this indicator might improve even further with an optimal design in the number and location 

of parking bays. Second, at the end of the period, there was still an important share of e-

scooters (almost 15%) mis-parked when a parking bay is nearby (class B). Class B is 

expected to be composed mainly of unlawful users, i.e., those who never follow the rules. 

In addition, the evidence does not show an improvement of this classification over the time 

span even if, overall, it does show a clear improvement for the other two classifications. 

Therefore, more studies should be conducted to understand this type of behavior and the 

means to incentivize these users to comply with the regulation. 

 

Figure 10. Evolution in the composition of e-scooters according to its 

parking classification 

 
Note: The Figure reports the number of e-scooters in each parking classification as a share of the 

fleet-size. Values add up to one because e-scooters can only belong to one class by design. E-scooters 

are classified according to its likelihood to be parked inside a parking bay. Class A. Properly parked 

are vehicles located at a distance below or equal to the expected mean of the distance-decay function. 

Class B. Mis-parked when parking bay nearby are e-scooters located at a distance above the expected 

mean, but below three times the standard deviation. Therefore, Class C. Mis-parked when no parking 

bay nearby are those located at a distance beyond three times the standard deviation. Straight lines 

were intentionally introduced to identify the first national lock-down after the global pandemic. 
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Figure 11. Share of class B e-scooters by district before 

and after the implementation of parking regulations 

  
Note: The maps report the average number of e-sooters in Class B. Mis-parked 

when parking bay nearby in each district as a share of the fleet-size. Panel a) 

only includes e-scooters deployed in August 2019 and Panel b) only includes 

vehicles deployed in December 2020. Numbers are used to identified districts’ 

names in Paris (1st district, 2nd district etc.). 

 

Although the share of class B scooters shows to be constant along the period of study, it 

is still relevant to analyze differences across districts to provide empirical evidence about 

the distribution of mis-parking across the city. To this end, we measure the shared of class 

B e-scooters in each district before and after the regulation. We compute the average of this 

share in August 2019 as well as in December 2020. Then, we compare the results within 

and intra period. As it can be noted in Figure 11 a), in August 2019, class B e-scooters were 

mostly concentrated in downtown districts (1st to 7th). Other districts, such as the 16th and 
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the 20th, showed extremely low number of class B e-scooters. On the other hand, in 

December 2020, the results show a more even distribution of this indicator across districts 

with only a few showing extreme values. This evidence, together with the conjecture about 

class B composition in terms of type of users, allows us to conclude that parking regulations 

had an effect on the spatial distribution of opportunistic behavior. Furthermore, it reveals 

that mis-parking remains a global issue that impacts the whole city. 

 

Figure 12. Congestion in parking bays 

  
Note: The Figure reports the evolution in the indexes related with congestion in parking bays. The 

Share of congested parking bays refers to the number of parking bays with exceeded capacity as a 

proportion of the total number of parking bays in the city. The Share of e-scooters overcrowding 

parking bays is the number of e-scooters overcrowding parking bays, i.e., the number of vehicles 

beyond capacity as a proportion of the fleet-size. Dark lines show a smoothed patter applying the 

Locally Estimated Scatterplot Smoothing (LOESS) function. A blank space is intentionally introduced 

to identify the first national lock-down after the global pandemic. 

 

 Another crucial indicator regarding mis-parking is related with congestion in parking 

bays. Contrary to stations-based modes, designated parking bays in the form of painted 

corrals do not restrict users to drop-off the vehicles when the space reach its capacity. As a 

result, one could expect an excessive concentration of vehicles in specific parking bays. We 

document this effect in Figure 12. First, we show the evolution of the share of congested 

parking bays. As noticed, congestion raises with the construction of parking bays and the 

enforcement of the rules. In the first part of 2020 until approximately October, 10% of 

parking bays were congested. However, the index picked to a point were almost 30% of 

parking bays showed a sign of congestion in the last three months of the year. What is more, 

the index shows a clear positive tendency with no sign of deceleration at the end of the 
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period. Second, we also show the share of e-scooters that overcrowd parking bays. The 

pattern is similar to the previous index along the period. In this case, the evidence suggests 

that almost 20% of vehicles (close to 3,000) are responsible for parking bays congestion. It 

is important to highlight that both indexes show different growth rates in the last quarter of 

the year. Congested parking bays growth at a rate of 500% versus 300% growth rate for the 

share of vehicles overcrowding parking bays.  

 

6.3  Effects on accessibility 

 

The second research question that we address in this paper is related with the unintended 

effects of the regulation. Notably, parking bays accumulate e-scooters in specific spots in 

the city. Therefore, their location and distribution became relevant for the accessibility of 

vehicles. As a reminder, accessibility is defined here as the shortest distance that any users 

must commute to find the closest e-scooter. The results of the KPI develop for this purpose 

are documented in Figure 13. As before, the darkest curve shows the smoothed curve using 

a LOESS method and the blank space is the consequence of dropping observations due to 

the global pandemic. The evolution of this KPI shows that, in August 2019, the average 

distance to find the closest e-scooter in the city was about 120m (0.6 after normalization). 

Nonetheless, after the construction of parking bays in December 2020, this KPI reached a 

value close to 250m (1.2 after normalization), which represents a percentage increase of 

108%.  

The regional analysis reveals interesting results. To provide a before-after comparison, 

we compute the percentage change in this KPI by district. As can be seen in Figure 14, eight 

out of twenty districts (40%), show an improvement in the accessibility of e-scooters. In 

other words, the distance to find the closest e-scooter decrease as a consequence of the 

construction of the parking bays. Nevertheless, this improvement does not compensate the 

loss in accessibility in the other districts. Another relevant conclusion is related with the 

spatial redistribution of accessibility after the regulation. Note that inner-north districts (1st 

to 4th) are the one with the largest lost in accessibility with a percentage increase larger than 

90% on average. In contrast, all the districts that showed improvements are located in the 

eastside of the city.   
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In a nutshell, the findings suggest that parking regulations in Paris have a negative effect 

on the accessibility of e-scooters by increasing the average distance to find the closest 

vehicle. However, the effect is largely heterogeneous across districts. As a matter of fact, in 

40% of them (that represent 47% of the total city’s surface) accessibility improved after the 

provision of parking infrastructure.  

 

Figure 13. Average distance to the closest e-scooter 

 
Note: The Figure reports the evolution in the average distance from any location in the city to the closest 

parking bay normalized by fleet size. This index is computed using rasters, where the location of each cell 

represents one location in the city and the value of the cell measures the distance to the closest e-scooter. 

For further details about normalization, please see Appendix B. Dark lines show a smoothed patter applying 

the Locally Estimated Scatterplot Smoothing (LOESS) function. A blank space is intentionally introduced 

to identify the first national lock-down after the global pandemic. 

 

Another important concern is related with the potential impact of parking bays on the 

distribution in the number of vehicles across the city. The KPI develop to study this effect 

explores the distribution of the differences in the kernel density estimations between 

December 2020 and August 2019. First, we provide visual evidence of such estimations in 

Figure 15 a) and b). Both maps show zones in the city with high (in yellow) and low (in 

blue) concentration of e-scooters. Blank zones are excluded regions with density values 

lower than the mean. Moreover, a chart that reports the distribution of the kernel density 

estimation is included in each Figure. Although some differences are possible to identify 

from this visual inspection, computing the difference between both scenarios will allow to 

obtain analytical conclusions. The result of this exercise is documented in Figure 16. Note 

that the difference ranges from -0.51 to 0.62. Negative values (in red) represent regions 

where the density of e-scooters was higher in August 2019. Conversely, positive values (in 
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blue) are zones where the density was higher in December 2020. Regions with low variation 

were intentionally left blank. These regions are spots that remained unchanged. In addition, 

the Figure includes a histogram that describes the distribution of all the values in the raster. 

 

Figure 14. Difference in the average distance to the closest 

e-scooter before and after the regulations 

 
Note: The map reports the percentage change in the KPI Planar distance to 

closest e-scooter between August 2019 and December 2020. A monthly average 

of the daily KPI was used. Numbers are used to identified districts’ names in 

Paris (1st district, 2nd district etc.).  

 

  Several findings might be obtained from the analysis. First, parking bays improved the 

spatial coverage related with the provision of the service. Figure 16 clearly shows a higher 

density of e-scooters beyond the periphery (the provision of e-scooters is restricted to zones 

within the periphery of the city) in August 2019. Therefore, the construction of parking bays 

might have helped the city to control the geographical boundaries for the operation of this 

service. Second, the distribution reflects differences in the density over time. A positive 

mean (0.06), a positive skewness (0.64), as well as the long tails of the distribution indicate 

that, overall, the density of e-scooters in the city changed due to the construction of parking 

bays. Finally, analyzing the spatial component of the difference in the density shows that 

parking bays augmented the number of e-scooters in the south-east regions of the city at the 

expense of reducing the density mainly in the south-west and downtown districts. Therefore, 

unexpectedly, parking regulations had an effect on the distribution of e-scooters in the city. 

This result is because the capacity of e-scooters in each parking bays is limited, which might 

force operators to considered other regions of the city to deploy their e-scooters. 
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Figure 15. Comparison in the density of e-scooters across the city before and 

after the construction of parking bays 

  
Note: The map reports heat-maps representing the concentration of e-scooters in the city before (Panel 

a) August 2019) and after (Panel b) December 2020) regulation. A kernel density estimation (KDE) 

was used to measure concentration. To be comparable across time, each heat-map was normalized using 

the min-max methodology. Following McKenzie (2020), only values above the mean are considered to 

avoid volume effects. Plots at the bottom left corner show the distribution of the kernel density in rasters 

before truncation.  
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Figure 16. Differences in the density distribution of e-scooters 
December 2020 relative to August 2019 

 
Note: The map reports the difference in the concentration of e-scooters before and after the construction 

of parking bays. It shows the result of subtracting, cell by cell, the values in the heat-map for December 

2020 from the vales observed in August 2019. Transparent regions represent locations in the city with 

low variation in the concentration of e-scooters. Regions in blue represent places in the city with a 

higher concentration of e-scooters in December 2020 in comparison with August 2019. Regions in red 

show the opposite results. The plot at the bottom shows the resulting distribution of the difference in 

the raster. 
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7. Discussion 

 

This paper documents the effects of parking regulations implemented with the purpose of 

better integrate the deployment of dockless e-scooters in the city of Paris. The Key 

Performance Indicators developed and documented in this paper are limited to the 

availability of data and its structure. We acknowledge that parking regulations, namely in 

the form of parking corrals, might have additional effects worth to be analyzed.  

Demand-side. On the one hand, as we documented here, parking bays move e-scooters 

away from users decreasing the attractiveness behind free-floating. On the other hand, 

parking bays force operators to better distribute e-scooters across the city. This in turn might 

increase demand by attracting uncovered users before the regulations. Moreover, parking 

bays might reduce users’ uncertainty to find a ride. As it is the case in station-based transport 

models, commuters are aware of the location of stations and direct themselves to those 

points to pick-up vehicles. Free-floating instead, requires users to use their phones to locate 

the closest vehicle. As noticed, the effect of parking regulations on demand for e-scooters 

is ambiguous and require further analysis. 

Supply-side. Complying with the regulation impacts the provision of the services by 

increasing operators’ costs. Suppliers must invest in technologies to monitor users’ 

behavior. For instance, to complete the journey, users are mandated to send pictures of the 

e-scooter located inside parking bays. The app then uses artificial intelligence to determine 

whether the vehicle is properly parked. Other technologies include geofences to virtually 

design parking bays. Moreover, operators might incur on rebalancing cost due to a high 

concentration of vehicles in specific parking bays as we showed here. In addition, 

concentrating e-scooters in parking bays might trigger operators to compete for space. 

Finally, the spatial re-distribution of e-scooters creates supply in places where demand 

might not be guaranteed. As it is the case in other markets, increasing supply when demand 

is low might increase social costs resulting in welfare losses. 

General interest. Parking regulations might have effects beyond the market for e-

scooters. For instance, a well design parking system might have positive effects in terms of 

intermodal behavior. Parking bays closer to public transit might trigger users to complete 

their journey complementing both transport systems. Another effect is related with security. 

Defining parking zones reduces the likelihood of finding e-scooters laying down in the 
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middle of sidewalks improving security conditions for other users. However, congestion of 

parking zones might have the opposite effect. An excessive concentration of vehicles in 

specific parking bays might block sidewalks and streets harming security and raising 

citizens’ perception of an unharmonized system. Considering the opportunity cost of land 

use is also of general concern. On the one hand, parking bays reduce the space for private 

parking which might have a positive impact if it reduces car usage. On the other hand, 

leasing the space to private companies might not be beneficial if there are other alternatives 

that includes the general public. In addition, it raises questions about the administration of 

the resources collected by authorities. 

Finally, it is important to point out that a micro level analysis might be suitable to 

understand mis-parking behavior. Different factors influence citizens towards parking. 

Users might change behavior depending on the conditions of the environment and on 

specific characteristics of the ride. One might expect different behaviors between tourists 

and residents or between a commuting and a ludic ride. What is more, some of these factors 

are related with cultural and cognitive conditions specific of the region of study. Because 

many of these factors are often difficult to account for in empirical studies, we recommend 

researchers and politicians to be cautious interpreting results regarding mis-parking.  

 

8. Conclusion 

 

One of the main drawbacks for the adoption of dockless e-scooters is mis-parking. In the 

form of cluttering, i.e., the random parking of vehicles in the city, mis-parking of e-scooters 

has been considered for many as a mode unharmonized with the rest of the mobility mix. 

With the aim of improving the integration of this service, many cities have implemented 

different regulations that has received limited attention in the literature. The city of Paris, 

for instance, has built parking bays in the form of painted corrals where users are mandated 

to drop-off the vehicle at the end of their journey. 

In this paper we propose a methodology to evaluate and monitor the impact of such 

parking regulations in the city of Paris. Exploiting the spatial relationship between the 

geolocation of parked e-scooters and parking bays, we constructed a set of Key Performance 

Indicators to evaluate the effectiveness of the regulation and to monitor unintended effects 

over time. Our findings suggest the following. First, we document that parking bays have 
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being effective reducing cluttering by concentrating more than 85% of the total fleet size. 

As a matter of fact, the average distance between parking bays and e-scooters was only 

about 20m after the implementation of the regulation (almost equal to the average level of 

GPSs’ inaccuracy, which is 20m approximatively).  

Second, we found that the regulation has been effective incentivizing opportunistic users 

to comply with the rules reducing the number of mis-parked vehicles when no parking bay 

nearby. However, the share of overcrowded parking bays reached 30% and showed no sign 

of deceleration. Finally, we found evidence that parking regulations negatively impacted the 

accessibility of dockless e-scooters measured as the average distance to find the closest 

vehicle in the city. On average, the average distance increased 108% (from 120m to 250m) 

between August 2019 and December 2020, before and after implementing the rules. 

However, the regional analysis revealed that some districts benefited from the regulation. 

In particular, the scenario in the south-east districts showed an improvement of accessibility 

and a larger number of vehicles per surface unit.  

This work has important policy implications for regulation and urban planning. The KPIs 

developed here could help regulatory bodies to implement data-driven regulatory practices 

to monitor the behavior of e-scooters operators. Furthermore, they might be modified to 

different contexts and to the different regulatory frameworks that have being implemented 

all around the globe. What is more, our findings might help policy makers to decide the 

optimal number of parking bays as well as their optimal location with the aim of finding a 

balance between harmonization and accessibility. 

Finally, we raised new concerns and questions that deserved to be addressed in the future. 

Parking regulations should have other effects in addition to those addressed in this paper. 

We have identified the following: they might impact users’ certainty to find an e-scooter, 

improve safety and security for other users of the public space, and improve public opinion 

about dockless micro-mobility services. This in turn might increase demand, however, it is 

important to consider spatial heterogeneities analyzing market dynamics to avoid 

unbalances that might lead to welfare losses. Additionally, considering the opportunity cost 

of the public space dedicated exclusively for dockless e-scooters is key to evaluate the 

welfare effects behind the public intervention. 
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Appendix A. GPS inaccuracy analysis 

 

The inaccuracy of the GPS devices used in dockless e-scooters was estimated as follows: 

1. Select twenty-five parking bays at random. 

2. Select all the vehicles within a buffer of one hundred meters. 

3. Collapse the data set to observations after the construction of parking bays. We 

collapsed the data to observations from December 7th to 13th, 2020. This week was 

selected to avoid holidays or other non-working days. 

4. Drop all the vehicles inside parking bays. 

5. Compute the distance in meters between the remaining vehicles and parking bays. 

6. Drop parking bays with very noisy information (see Figure A-1 for an example). 

Compute descriptive statistics (see Figure A-2 for an example). 

7. To estimate the boundaries of GPS accuracies, we have produced descriptive 

statistics selecting parking bays with high accuracy. See Figure A-3 for the results. 

 

Figure A-1. Example of parking bays dropped and kept for the analysis 

 

 a) Dropped b) Kept 

Note: The Figure shows, in dots, the location of e-scooters around selected parking bays, in light pink.  
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Figure A-2. GPS inaccuracy estimation 

 

 a) Buffer: 100m b) Buffer: 40m 

Note: The Figure reports different descriptive statistics of the distance from e-scooters to parking bays after the selection 

of parking bays. Panel a) shows the results for the maximum distance considered in the analysis. Panel b) restricts the 

analysis to e-scooters located within 40m to the closest parking bay. MAD refers to the Mean Absolute Deviation which 

is a robust measure to the presence of outliers. 

 

Figure A-3. GPS inaccuracy estimation from selected parking bays 

 
Note: The Figure reports different descriptive statistics of the distance from e-scooters to highly accurate parking bays, 

i.e., parking bays with a low GPS uncertainty. Selection was done after visually inspect the data. 
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Appendix B. Normalization 

 

The problem of solving the average distance of two random points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in 

a grid cell of size 1 x 1 is a relatively well-known problem of analytic geometry. It is the 

result of solving the following integral: 

 

∫ ∫ ∫ ∫ √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2𝑑𝑥1𝑑𝑥2𝑑𝑦1𝑑𝑦2

1

0

= 4 ∬ √𝑥2 + 𝑦2

1

0

(1 − 𝑥)(1 − 𝑦)𝑑𝑥𝑑𝑦 

1

0

1

0

1

0

 

 

Where 𝑥𝑖 and 𝑦𝑖 are random points from a uniform distribution. Therefore, the distance 𝑥 =

|𝑥2 − 𝑥1| has triangular distribution with a p.d.f. 𝑓(𝑥) = 2(1 − 𝑥). After some 

computations, it is possible to shown that the value of this integral is approximatively 0.521. 

We modified this problem to measure the closest distance between a point (𝑥0, 𝑦0) and 𝑁 

points randomly located in the cell. We can think of this exercise as an abstraction of the 

problem of measuring the distance between a predetermined point in the city and the closest 

e-scooter. We simulate the problem following the next steps: 

1. Assuming a cell of size 1 x 1, we simulate 106 different random (uniformly 

distributed) locations of the point (𝑥0, 𝑦0) in the cell. 

2. For every (𝑥0, 𝑦0) we compute the distance to a random point (i.e., 𝑁 = 1) 

uniformly distributed. 

3. We compute the average of such distance and store it. 

4. We redraw the location of (𝑥0, 𝑦0) and re-compute the distance to a random point 

(i.e., 𝑁 = 2) uniformly distributed. 

5. Then, we compare pairwise (i.e., for each of the 106 locations) the result in step 2 

with step 4 and keep the smallest value, i.e., the closest distance. Afterwards, we 

recompute the average between the 106 distances and store it. 

6. It is possible to repeat 𝑁 times the step number four and compare the result with the 

𝑁 − 1 scenario. 

The result for 𝑁 = 1,024 is documented in Figure B-1. As expected, the minimum distance 

when 𝑁 =  2 is close to 0.521.  
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Finally, we approximate the rate of decay when 𝑁 increases assuming the following 

relationship between distance and the number of points in the cell: 

 

log(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) = 𝛽1 log(𝑁) + 𝜇𝑛 

 

We estimate the equation using OLS. We find that 𝛽1̂ =  −0.61 (SD = 0.001 and 𝑅2  =

 0.99). Hence, the closest distance between a point (𝑥0, 𝑦0) and 𝑁 points randomly located 

in the grid is ≈
1

2√𝑁
. 

 

Figure B-1. Closest distance to N points randomly located in a cell 

 
Note: The Figure reports the minimum distance between N points randomly drawn in a box 

of size 1x1.  
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Abstract 

Road transportation is one of the most carbon-emitting sectors in the economy, urging the 

implementation of strategies to facilitate the ecological transition. Carpooling is considered 

a promising innovation for carbon mitigation. However, its adoption may make car travel 

more attractive, leading to uncertain environmental impacts. This paper devise an indicator 

to assess the effectiveness of carpooling in mitigating carbon emissions. Moreover, it 

leverage on a unique dataset to examine the impact of various policies on the baseline 

indicator. We argue that the potential of carpooling for carbon mitigation crucially depends 

on the occupancy rate, which encompasses travelers’ preferences for alternative modes of 

transport. Regarding the mechanisms, our findings suggest that raising the cost of car travel 

through fuel price hikes is associated with increased supply and demand for carpooling. We 

then calibrate the potential impact of the French carbon tax. Furthermore, our research 

underscores the promising prospect of incentivizing drivers to switch to passengers, as this 

transition holds the potential for significant carbon mitigation outcomes. These findings offer 

valuable insights for designing effective policies aimed at mitigating carbon emissions. 
Keywords: Carbon Mitigation, Carpooling, Climate Change. 

JEL classification: H23, R41, Q54. 



1. Introduction

Reducing emissions from road transport is paramount to achieve climate goals. Accord-

ing to the French Ministry of Ecological Transition, road transport stands as the main emit-

ting sector, contributing with 28.7% of all emissions in 2020. Notably, more than half of

these emissions originate from individual vehicles, highlighting the urgency of implement-

ing comprehensive strategies that go beyond merely improving motor engine efficiency.1

Ride-sharing, also known as carpooling, emerges as a promising innovation for carbon mit-

igation by providing users with on-demand access to transport services at a reduced cost.

However, carpooling may inadvertently increase the attractiveness of car travel, resulting in

uncertain environmental impacts. Consequently, significant uncertainty persists regarding

the conditions under which carpooling effectively mitigates carbon.2

Carpooling is a relatively recent innovation in intercity transportation that involves a plat-

form connecting individuals traveling by car with others willing to share the same route. By

sharing the journey, travelers jointly bear the expenses such as fuel costs and tolls. This trans-

port mode is often regarded as environmentally friendly since it allows two (ormore) separate

private drivers to reduce their carbon emissions by sharing a single vehicle. However, the

environmental impact of carpooling is not solely determined by the number of occupants in

the vehicle, in fact, it relies on the potential alternatives of all travelers involved. The cost

sharing condition may attract travelers from cleaner alternatives such as trains. This modal

shift effect may diminish the environmental benefits of intercity ride-sharing.3

This paper delves into intercity carpooling in France as an strategy for carbon mitigation.

The analysis serves two main objectives. First, it seeks to establish an indicator to determine

the effectiveness of carpooling in mitigating carbon emissions, taking into account the modal

shift effect. We rely on the short-term distribution of stated preferences from carpooling

riders regarding alternative transport modes, along with the corresponding carbon emissions

1International organizations such as the Environmental European Agency (EEA) have emphasized this ur-
gency. In fact, this organization has recently stated that “in road transport, higher occupancy rates are needed,
for example through ride-sharing” EEA Website [Accessed 21/08/2023].

2Recently pointed out by the Intergovernmental Panel on Climate Change in the Sixth Assessment Report,
Climate Change 2022: Mitigation of Climate Change (IPCC, 2022).

3Consider the following example. If two train travelers, a low-emission mode of transport in France, switch
to carpooling, then the car journey would result in an increase in carbon emissions.
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for each alternative. The indicator is expressed in terms of the occupancy rate, representing

the minimum number of travelers in a ride required to mitigate the emissions of an average

car journey. The central premise is that a higher occupancy rate indicates a greater probability

of carbon mitigation.

Second, leveraging a unique dataset from the leading carpooling platform in France, we

delve into the impact of various mechanisms on our baseline indicator and, ultimately, on the

potential of carpooling for carbon mitigation. Our analysis focuses on two primary levers

that align closely with common policies aimed at reducing CO2 emissions: fluctuations in the

cost of car travel due to fuel price volatility and incentives for drivers to travel as passengers,

a behavior that we denominate switchers. In particular, we combine the city of origin of

each ride with geolocated data on filling stations to measure travelers’ responses to fuel

price fluctuations. Additionally, we calculate carbon emissions under different scenarios of

drivers switching to passengers to examine the potential effects of promoting this behavior.

Our analysis reveals that carpooling effectively reduces carbon emissions when two trav-

elers share a ride, comprising one driver and at least one passenger. This phenomenon stems

from notable disparities in the transportation choices of alternative modes of drivers and

passengers. Notably, solo driving is significantly more common among drivers, with 66%

opting for this mode in the absence of carpooling, compared to only 16% of passengers (see

Table 1 for details). This contracts in solo driving among travelers significantly influence the

outcome. Additionally, increasing the occupancy rate further diminishes emissions from car-

journeys. These findings motivates the importance of investigating mechanisms to promote

higher occupancy rate in carpooling.

Initially, we explore the impact of car travel costs on the behaviors of carpooling par-

ticipants. Particularly, we analyze the fuel price elasticity of both offering and requesting

seats for journeys. The former denotes the supply side, while the latter reflects the demand

side for carpooling services. Our findings suggest that a 10% rise in fuel prices corresponds

to approximately a 3.6% increase in seats offered and roughly a 4.8% increase in seats re-

quested. This increase in supply and demand in response of fuel price hikes translates to an

approximately 5.2% increase in the total number of confirmed seats. Furthermore, we exam-

ine how these effects vary among users with differing levels of experience on the platform.

We observe that novice users, defined as those with fewer than 5 seats offered or requested,

exhibit a more pronounced elasticity compared to their more experienced counterparts. This
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discovery holds significant policy implications, suggesting the potential efficacy of policies

aimed at attracting new users to the carpooling service.

Building upon the aforementioned findings, we study the phenomenon of drivers switch-

ing into passengers, which presents a promising strategy for mitigating carbon emissions.

This approach is particularly relevant given the tendency of drivers to opt for solo car usage

in the absence of carpooling. We draw several scenarios involving switchers, including two

benchmark cases. The results reveal that if all empty seats were fill by current drivers, the

resulting emission reduction would be equivalent to approximately 9.3 cars traveling 500km

daily. Furthermore, in an scenario where no incumbent drivers switch and all empty seats

were occupied by newcomers, the emissions saved would be comparable to those of 11.3

cars.4 Finally, we discuss further policy implications derived from our findings, including

the implications regarding the stagnation of the French Carbon Tax and the subsidies offered

to new carpooling users through the ‘Certificat d’économie d’énergie’.

Our research contributes to the existing literature on individual strategic responses within

the transport sector to increases in fuel and road pricing (Sagner, 1974; Bomberg & Kock-

elman, 2007). The main responses include reducing discretionary driving and decreasing

driving speeds (Wolff, 2014). Davis and Kilian (2011) highlight the considerable promise

of these responses in terms of their environmental impact, particularly in their assessment

of the introduction of a carbon tax aimed at reducing emissions in the transportation sector

in the United States. Additionally, some studies indicate that drivers consistently react to

gasoline prices by reducing car ownership (Klier & Linn, 2010), their annual vehicle miles

traveled (Sipes & Mendelsohn, 2001) and, to a lesser extent, by increasing public transport

ridership (Spiller, Stephens, Timmins, & Smith, 2014).

This paper contributes to the ongoing debate about the effect of road transport policies

on the environment. For instance, Fu and Gu (2017) assess the effects of toll fee removal on

congestion and air pollution in China. However, there remains a dearth of research exam-

ining the cost of car travel and its potential for carbon mitigation through carpooling, with

an exception being the study by Bento, Hughes, and Kaffine (2013). Focusing on commut-

ing in High Occupancy Vehicles lines in Los Angeles, the authors find that a 10% increase

in fuel price is associated to 10 more carpoolers per hour on those lines. In contrast, our

4Based on the average emissions of a new thermal car in 2019 equal to 112 gCO2/km.
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paper focuses on the relationship between car travel costs and individual responses for inter-

city journeys. Furthermore, we extend this analysis to explore the environmental impact of

carpooling, a research avenue that has traditionally received less attention.

We explore individual traveler characteristics, including their experience using the car-

pooling platforms. Hence, our study contributes to the existing literature that investigates the

influence of socio-demographic factors on carpooling behavior. Current research in this area

typically examines factors such as age, gender, and income. For instance, studies have shown

that younger individuals aremore prone to carpool (Shaheen, Stocker, &Mundler, 2017; Bul-

teau, Feuillet, & Dantan, 2019; Monchambert, 2020), while women exhibit a greater will-

ingness to participate in carpooling compared to men (Bulteau et al., 2019). Additionally,

female drivers tend to prefer having two passengers rather than one, whereas male drivers

often prefer sharing the ride with only one passenger (Monchambert, 2020). Concerning in-

come, Shaheen et al. (2017) find that high-incomemembers of carpooling platforms are more

likely to offer seats, whereas low-income members tend to request seats more frequently.

The structure of this paper is organized as follows: Section 2 establishes the baseline

indicator for carbon mitigation. Section 3 studies the effect of car travel cost on the oc-

cupancy rate. This section describes the database, outlines our primary empirical strategy

and presents our key findings. Policy implications are discussed in Section 4, followed by

concluding thoughts in Section 5.

2. Baseline indicator for carbon mitigation

To determine a baseline indicator for carpooling to mitigate carbon it is crucial to take into

account the modal shift effect to internalize the emissions of travelers opting for alternative

modes of transport. In a nutshell, carpooling mitigates carbon when the emissions from the

carpooling journey are lower than the combined emissions of all travelers who would have

otherwise used alternative transportation modes.

Denoting Ec as the total CO2 emissions of a carpooling (c) journey and Enc as the com-

bined emissions af all travellers opting for an alternative transport mode (nc), carpooling

mitigates carbon when

Enc − Ec ≥ 0 (1)

Page 135



Note that Ec is equal to the distance of the ride d (in km) times the vehicle emission

coefficient, ev, measured as grams of carbon emissions per kilometer (gCO2/km). On the

contrary, Enc should be computed taking into account the alternative modes of both drivers

and passengers. Assuming that one driver is matchedwith n homogeneous passengers,Enc is

then equal to the sum of driver eDnc and passengers ePnc emissions from the alternative transport

modes.5

Enc = d× (eDnc + n× ePnc) (2)

From both equations (1) and (2), we can determine the occupancy rate n, defined as

the number of passengers in the ride, that balances the emissions from carpooling with the

emissions of all travelers using alternative transportation modes:

eDnc + nePnc ≥ ev

n ≥ ev − eDnc
ePnc

(3)

The key metric of achieving carpooling carbon mitigation is to increase the number of

passengers in each ride. This result is rather intuitive because some travelers would have

opted for a less-polluting transport mode such as trains. It is important to point out that

additional passengers do not increase carbon emissions from the carpooling journey. In fact,

ev is not conditional on the number of travelers. In contrast, carpooling may help to mitigate

the emissions from the alternative transport mode.

It’s important to recognize that the profiles of travelers vary between drivers and pas-

sengers, both would likely have opted for different modes of transportation with differing

probabilities considering factors such as car ownership. Therefore, equation (3) must be

adapted to take this fact into account. Denoting by wD
j the probability of a driver of opt-

ing for the alternative mode j ∈ m with an emission coefficient ej , and wP
j the equivalent

probability for passengers, Enc may be restated as

5Note that here we use gCO2/km/person as the definition of the emission coefficients of alternative modes,
while for the vehicle emission coefficient, we only use gCO2/km for simplicity because the total emissions of
the ride are (roughly) the same no matter the number of people in the car. We could have written the equation
as Ec = d× 1× ev , where ev would be gCO2/km/person. For alternative modes, especially mass transit, it is
important to assess both the total emissions per ride and the occupation rate to attribute emissions per person
using the mode.
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Enc = d×
m∑
j=1

ej
(
wD

j + nwP
j

)
(4)

Several assumptions must be taken into account to ensure the validity of our baseline

indicator. First, we assume that the emission coefficient of transport modes remain stable

over time. Specifically, if cars become less polluting (ev decreases), the occupancy rate

threshold for mitigating carbon would diminish. Second, we assume travelers’ preferences

over alternatives remain unchanged. Changes in the distribution of travelers’ preferences,

capture by the weights wD
j and wP

j directly influence Enc. Lastly, we assume there are no

significant market variations across alternative transport modes. This implies that transport

mode prices remain steady, as any changes would impact travelers’ preference distributions.

2.1. A case study of the occupancy rate

In this section we use real data on carbon emissions and the distribution of travelers pref-

erences to assess the carbon mitigation potential of carpooling. We collected car emissions

data by mode from the European Environmental Agency (EEA) and the French Agency for

Ecological Transition (or ADEME).6 We then combine this data with vehicles’ models in car-

pooling following the methodology outline in Appendix A.We successfully matched 80% of

the vehicles modes reported in the carpooling dataset (see subsection 3.1 for details). How-

ever, because only 50% of drivers report the model of their vehicle, we rely on the average

vehicle emission coefficient of all rides the remaining 50%. 7 Concerning emissions for

other transport modes, we only use ADEME standard as it is tailored to the French case.

Two distinct sources were used to address potential caveats. For instance, the EEA stan-

dard enables differentiation based on vehicles models, but it lacks accuracy in reflecting fuel

consumption for intercity trips, as it only estimates a low-speed scenario (0-30 km/h). In

contrast, the ADEME standard offers a more realistic estimation in terms of speed, but it

provides only a single emission coefficient for all vehicle models.

To estimate travelers’ preferences over alternative modes,wD
j andwP

j , we use the follow-

6EEA website [Accessed 15/04/2023]
7ADEME website[Accessed 21/07/2023].
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ing two surveys. The first survey, conducted by ADEME in 2015, includes responses from

1,393 BlaBlaCar users. The second survey, conducted in 2018 by BlaBlaCar in collabora-

tion with the consulting company Le BIPE, includes 1,064 respondents.8 For the purpose of

our study, we focus on the question concerning the alternative mode travelers would opt for

when carpooling isn’t available. Furthermore, the question identifies whether the travelers is

usually a driver or a passenger. Both surveys specifically target carpooling participants and

offer insight into the distribution of their preferences regarding alternative transport modes.

Table 1: Carbon emissions and carpoolers’ preferences over transport modes

Thermal cars Train Thermal bus Airplane Subway No Travel
High-speed Regional

Panel A. Carbon emissions coefficient (gCO2/km/person)

ADEME (ev , ej ) 192 1.73 24.8 104 229.6 2.5 0
EEA Average (ev) 114.2

Panel B. Alternatives to carpool from ADEME

Passenger (wP
j ) 16% 27% 42% 2% 1% Not asked 12%

Driver (wD
j ) 66% 10% 14% 1% 1% Not asked 8%

Panel C. Alternatives to carpool from Le BIPE

Passenger (wP
j ) 12% 24% 34% 15% 1% 1% 13%

Driver (wD
j ) 78% 7% 5% 1% 4% 0% 5%

Notes: In Panel A. ADEME and EEA stand for the European Environmental Agency (EEA) and the French Agency for
Ecological Transition (ADEME). The emissions coefficient for airplane only includes short-distance flights since we focus
on alternatives to domestic rides. Panels B and C reports the results of two different surveys regarding the question about
the alternative mode travelers would opt for when carpooling isn’t available. The survey conducted by ADEME in 2015
includes responses from 1,393 BlaBlaCar users. The survey conducted in 2018 by BlaBlaCar in collaboration with the con-
sulting company Le BIPE includes 1,064 respondents.

The distribution of travelers’ preferences alongside the carbon emission coefficients of

different transport modes are presented in Table 1. Panel A of the table excludes emissions

during the construction phase of vehicles. Electric vehicles are omitted due to their low

representation, with only around 2% of users offering seats in these cars. Notably, there is

a distinction in emission coefficients between high-speed and regional trains, attributable to

the cleaner engines of the former and their higher passenger capacity.9 Concerning airplanes,

8ADEME commissioned 6t, a company specialized in transportation studies, to run the survey. Initially,
the survey was sent to four carpooling platforms. However, the other three collected very few responses. 6t
decided to only analyze data collected from BlaBlaCar users. The data on the published BIPE survey contains
responses from 6884 BlaBlaCar users from eight countries. We collected data directly from BlaBlaCar staff for
data from the 1064 French respondents. The ADEME survey [Accessed 21/07/2023], page 6 of the synthesis
and page 69 of the full report. The Le BIPE survey[Accessed 21/07/2023], page 9.

9High-speed trains in France are powered by electric motors, which is not the case for regional trains.
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we consider emissions for short-distance flights since we focus on alternatives to domestic

rides. As for public transport, we use the carbon emissions from the subway as a proxy. 10

Regarding travelers’ preferences, presented in Panels B and C, the Table highlights the

heterogeneity across different modes of transportation. As expected, a significant share of

drivers, between 66% and 78%, show a preference for car travel when carpooling isn’t avail-

able. Trains are the second most favored choice among travelers. Conversely, other modes

exhibit comparatively lower attractiveness. Notably, not traveling is a noteworthy option,

particularly among passengers, with percentages ranging from 5% to 8% for drivers and 12%

to 13% for passengers. Additionally, it’s observed that 12% to 16% of passengers would opt

for using their own car to complete the journey.

Note that the Le BIPE survey shows an increase in the use of buses for passengers. This

surge can be attributed to France’s market liberalization in September 2015 (only for jour-

neys over 100km). This deregulation on the supply side stimulated demand, positioning bus

operators as significant competitors in the market. Given that Le BIPE survey is more recent

in capturing current market dynamics, we prioritized it over the ADEME survey.

Using the aforementioned data, we computed the occupancy rate n from Equations (3)

and (4). The results are reported in Table 2, considering various combinations of surveys

and emissions sources. However, we advise caution in interpreting results based on the EEA

emissions standard, as it tests vehicles at low speeds, potentially leading to inaccuracies for

intercity journeys.11 Additionally, the Le BIPE survey is preferable over ADEME because

it reflects more recent market dynamics. Thus, according to our preferred estimation, the

minimum occupancy rate for carpooling to effectively mitigate carbon is equal to 0.61. It

is important to point out that the heterogeneous distribution of alternative modes to carpool-

ing contributes to a relatively high dispersion of the occupancy rate. This underscores the

According to the report of the French Transportation Regulation Authority (ART) on the opening up to com-
petition of the regional trains, in 2017, 18% of the regional trains are with diesel engine. Also, according to
data provided by ART, the occupancy rates of the classic regional train, TER, from 2017 to 2022 is 25%, 26%,
27%, 21%, 23%, 29% respectively. For high-speed trains, the rates are 67%, 67%, 72%, 59%, 65%, 74%
respectively.

10Public transport is not a viable alternative for most intercity journey. However, using the emissions form
the subway as a proxy diminish any potential bias. Note that public transport is not an option in the ADEME
2015 survey. In the BIPE 2018 survey, only 1% of passengers selected it. These passengers may come from
shorter rides that have public rail transportation connections like tramways, train segments, or regional express.
The metro emission coefficient would be the most appropriate in these cases.

11The results could be a good benchmark for urban carpooling.
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complexity involved in estimating the carbon mitigation potential of carpooling.

Table 2: Minimum occupancy rate for carpooling to effectively mitigate carbon

Source for travelers’ preferences Source for carbon emissions Occupancy rate (n)

Le BIPE ADEME 0.61

ADEME ADEME 1.26

Le BIPE EEA 0.33

ADEME EEA 0.95

Notes: The Table reports the occupancy rate computed from Equations (3) and (4). See Table 1 for details about travelers’ prefer-

ences over alternatives transport modes alongside their carbon emissions coefficient.

The results described above present a promising outlook, showing that any journey with

at least one passenger contributes to mitigating carbon emissions. To dig deeper into this

question, we explore several scenarios that take into account the heterogeneity in travelers’

preferences over alternative mode, as well as other potential biases in the surveys (see Ap-

pendix B for detailed results). Our findings suggest that shifting the distribution towards

cleaner modes, such as high-speed rail, while reducing the preferences towards buses and

flights, can increase the occupancy rate above one. On the contrary, efforts to reduce carbon

emissions coefficients of cars, such as through the transition from thermal to electric engines,

may diminish the value of our baseline indicator. Hence, the evidence presented here shows

the relevance of carpooling as a strategy for carbon mitigation; however, it also emphasizes

the necessity of implementing policies to boost the occupancy rate.

3. The effects of increasing the cost of car travel

Carpooling relies on the premise of sharing the journey’s cost among travelers which may

result in lower carbon emissions. As our previous findings show, carpooling proves effective

inmitigating carbon emissionswhen the occupancy rate remains sufficiently high. Therefore,

studying the impact of the cost of car travel on the occupancy rate becomes relevant for

policy-making purposes. In this section we use a unique data set to empirically measure fuel

price elasticity of both offering and requesting seats in carpooling journeys.
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3.1. Data

To conduct the empirical analysis we collect two main datasets: observable intercity car-

pooling rides, fuel prices at filling station level, and tolls fees by route. We obtain BlaBlaCar

data from direct research collaboration with the company. The rest of the data is publicly

available.

Carpooling rides. BlaBlaCar is the leading intercity carpooling platform in Europe. This

company allows millions of travelers to share long-distance journeys. Even thought drivers

are not professional, they are compensated with the purpose of splitting the cost of the jour-

ney.

Our dataset includes ride-level observations spanning from January 2017 to May 2022

encompassing 96 round-trips routes. These routes represent around 75% of the most popular

routes in the platform marketplace.12 We focus on the French market, which is one of the

most consolidated market worldwide. The dataset contains information including departure

and arrival city, departure date, and trip distance. It also includes information on the number

of seats offered by the driver, seats requested by potential passengers, seats booked, and the

price set by the driver. Additionally, user-related data such as travelers’ experience with the

platform when the ride takes place is included. Two measures of experience are available,

representing previous participation as drivers or passengers. An additional unique aspect of

the dataset is the information about vehicle brand and model, which is voluntarily declared

by drivers. 40% of the rides contain this information.

This dataset is, to the best of our knowledge, the most comprehensive data used for study-

ing supply and demand dynamics in carpooling. Furthermore, this data enables the explo-

ration of relevant features, including behavioral responses conditional on users’ experience.

Cost of car travel. To evaluate the effects of car travel cost, we collect additional data at route

level. These variables allow us to investigate the impact of car travel cost on the occupancy

rate.13 We collect fuel price data by filling stations for each city observed in the carpooling

12See Appendix H for the complete route list. See Appendix D for a detailed discussion on data representa-
tivity. Due to confidentiality concerns of BlaBlaCar, data is only shared when the route-date combination has
more than 10 rides offered.

13For electric vehicles, we ignore the cost of electricity and set the fuel cost at zero. The bias should be
negligible as EVs only count for around 2% of all rides.
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rides dataset. Prices are then aggregated by day at city level.14 Our dataset includes diesel

and 95 octanes gasoline prices because those are the most consumed fuel types in France.15

Concerning tolls, it is noteworthy that highways in France are managed by various con-

cessionaires, who possess the authority to establish toll fees. They can adjust these fees

annually, in February. Although data on toll fees is publicly available, it is dispersed across

different sources, including concessionaires’ websites. We systematically collect toll fee data

from 2017 to 2022 for every route included in our analysis.

Some important variables are absent from our dataset, including the value of time, typi-

cally quantified as the hourly wage. Notably, we omit vehicle depreciation due to the com-

plexities involved in approximating this coefficient for individual journeys. We address this

potential confounding effects by controlling for route and time-fixed effects. Certain as-

sumptions were made in our analysis. For instance, we assume uniform fuel consumption

for all drivers on the same route. Consequently, only fuel prices influence the total fuel cost

of the journey. Additionally, we presume that drivers consistently refuel their tanks at the

city of departure.

Other relevant variables. We collect other relevant variables to serve as controls in our

regression analysis. Initially, we focus on the primary competing modes of intercity travel:

buses and trains. Trimester-route level bus frequency data is obtained from the website of

the French transport regulator. 16 As for trains, due to the unavailability of historical data,

we manually collect the direct train frequency as of September 2022 and assume consistent

frequency throughout the entire data period. Dummy variables are then computed for direct

trains and direct high-speed trains along the same route. Other control variables include

departure city population and holidays.

14Fuel data source[Accessed 19/10/2022]. The raw data documents every change in price at every service
station, leading to different numbers of observations per day for different service stations. We simply compute
the mathematical mean for the daily city-level fuel price.

15According to the French Ministry of Transportation, in January 2022, diesel cars still occupy 55.5% of the
market, while gasoline cars occupy 42.2%.

16Bus data source [Accessed 16/11/2022].
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3.2. Descriptive Statistics

Table 3 presents summary statistics of the main variables of interest regarding carpooling

rides, car travel costs, and control variables. The data is aggregated at the route-day level.17

As observed from the table, the number of supplied seats more than doubles the number

of seats requested. Additionally, they are nearly five times the number of seats booked,

resulting in an occupancy rate of 0.5. If we narrow our focus to rides with booked seats only,

the occupancy rate rises to 1.5. This contrast is particularly noteworthy as it underscores

the potential to improve the occupancy rate. It is important to point out that the occupancy

rate shown in Table 3 does not represents BlaBlaCar’s occupancy rate because additional

passengers may be sharing the same car for intermediate journeys. Finally, novice users,

defined as those with less than five interactions with the platform, represent 31% of travelers.

Figure 1 illustrates the evolution of diesel and gasoline prices over time. Unsurprisingly,

prices experienced a decline at the onset of the COVID-19 outbreak. Furthermore, they have

shown a rapid increase since the end of 2021, attributed to the Russo-Ukrainian war. Addi-

tionally, the figure depicts the trend of booked seats over time, revealing the impact of the

global pandemic on carpooling. This effect persists into mid-2022. We exclude from our

analysis the initial lockdown period in France (March 17 to May 11, 2020), as carpooling

activity nearly ceased during this time. The subsequent lockdowns were less stringent, al-

lowing carpooling to continue operating to some extent. It’s important to note that Figure

Figure 1 does not establish a causal relationship between fuel prices and carpooling. Instead,

by conducting an econometric analysis controlling for time-fixed effects, we aim to address

potential biases.

17In this paper, we consider supplied rides for the same route on the same day homogeneous. This simplistic
view is certainly not perfect, but not unrealistic. Passengers for long-distance, inter-city carpooling rides are
more flexible in adjusting their departure time of day and departure locations compared to urban commuters.
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Table 3: Summary statistics

Variable Description Mean SD Min Max Count

Supply Daily seats offered by route 232.8 217.7 10 2845 116,511
Demand Daily seats requested by route 93.5 149.9 0 8199 116,511
Booked
(Q*)

Daily seats booked by route 45.9 69.3 0 1482 116,511

Occupancy
rate

Average no. of passengers per
ride

0.47 0.34 0 2.42 116,511

Occupancy
rate (bis)

Average no. of passengers per
ride with bookings

1.54 0.34 1 4 114,658

Novice = 1 if the driver has offered
or requested seats less than 5
times, = 0 otherwise

0.309 0.462 0 1 116,511

Ride price Average price set by drivers
(€ of 2015)

7.3 5.2 0.0 74.0 116,511

Gasoline Real price of gasoline 95%
octane (€ of 2015/litre)

1.83 0.66 0.70 5.47 116,109

Diesel Real price of diesel (€ of
2015/litre)

1.73 0.68 0.62 5.26 116,133

Distance Average route distance (km) 173.75 107.97 40.93 689.84 116,511
Toll fee Toll fee by distance (€/km) 0.07 0.03 0.0 0.16 116,511
Train freq. Daily No. of direct trains in

the route
20.09 9.95 2.0 58.0 116,511

Bus freq. No. of direct buses by
trimester in the route

453.60 576.41 0.0 4533.0 116,511

Population Population in city of origin
(thousands)

451,466.3 664,841.3 24,475.0 2,165,423.0 116,511

Notes: All variables are grouped by route-day without distinguishing round trips.

Figure 1: Monthly number of confirmed seats (left), shown together with the monthly aver-
age of fuel prices (right). January 2017 to May 2022.
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3.3. Empirical Strategy

To examine changes in carpooling supply, and demand relative to variations in the ob-

servable cost car travel, we estimate the fuel prices elasticities as follows:

ln(Qit) = β0 + β1 ln(Git−1) + γXit + FEi + FEt + ϵit (5)

The variableQit is a carpooling outcome on the route i at day t. The outcomes considered

include the quantity of seats offered (supply), seats requested (demand), and seats booked

(traded quantity denoted as Q*). The vector Git−1 denotes the fuel price at day t − 1 in

the city of origin of route i. We assume that drivers and passengers are better informed of

fuel prices at the start of their trip. The vector Xit comprises a set of variables suspected to

influence carpooling supply and demand. These variables may include toll fees by itinerary,

the frequency of buses and trains, and city-specific characteristics such as population. Also,

Xit includes times dummies to account for well-known seasonality factors like the day of the

week and holiday seasons in the city of departure. Furthermore, it includes the one-period-

lagged average price set by drivers as a market-relevant variable.

The vector FEi corresponds to a set of route fixed effects, which effectively filter out all

time-invariant route characteristics and control for unobserved heterogeneities. Additionally,

FEt is a set of monthly dummies designed to capture all time-varying factors influencing

carpooling and fuel prices. These determinants may include variations in economic activity,

advertising campaigns related to carpooling, and other seasonal effects. To ensure the consis-

tency of the error term, we employ clustered standard errors at the route level. Not clustering

the standard errors may pose challenges when comparing larger cities, which might exhibit

higher levels of carpooling activity, with smaller cities.

The coefficient of interest in Equation 5 is denoted as β1. This coefficient is interpreted

as follows: an increase of 10% of fuel price is associated with a change of 10 × β1% in the

number of seats offered, requested, or booked. We estimated Equation 5 using a Negative

Binomial regression because outcomes are in fact counting variables that may assume a zero-

value for some itineraries at a certain point in time.
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3.4. Results

Fuel price elasticities. We begin by estimating the fuel price elasticity of carpooling. Ta-

ble 4 reports the results of estimating Equation (5) for diesel prices. All the estimations

reveal a positive association between diesel prices and carpooling activity in France. Our

findings suggest that, between 2017 and 2022, an increase of 10% in diesel prices is related

with approximately a 3.6% rise in seats supplied (column 1), a 4.8% increase in seats re-

quested (column 3), and approximately a 5.1% increase in the total number of seats booked

(column 5). The relatively smaller reaction in seats supplied can be attributed to specific

characteristics of carpooling, where supply may transition into demand. An increase in fuel

prices might prompt individuals to switch from driving to becoming passengers, potentially

offering even lower travel costs. Additionally, column (7) shows the estimations using the

ratio of the number of seats booked to the number of seats supplied as the outcome variable.

Notably, the coefficient is positive and statistically significant suggesting that the additional

supplied is compensated by the rise in booked seats. Table 14 in Appendix F depicts the

results for gasoline prices.

A more surprising finding is the lack of statistically significance between carpooling ac-

tivity and toll fees. This could be due to several factors, including the infrequent variation

in toll fees, which typically occur only once a year, as well as the relatively small magni-

tude of these variations. On average, toll fees increased by 2.2% year-on-year in 2019 and

by 4.1% in 2022. In 2021, only two routes experienced a price increase as part of a policy

to recover from the effects of the global pandemic. Furthermore, the positive coefficients

associated with alternative transport modes such as trains and buses suggest that travelers

consider potential demand shocks rather than engaging in a straightforward substitution ef-

fect. Operators tend to increase frequencies in response to anticipated increases in demand.

To ease the interpretation of the log-log model we compute the marginal effects across

different segments of the fuel price distribution on the number of effective seats booked (Q*).

Figure 2 reports these effects derived from the findings presented in column (6) of Table 4

and Table 14 in Appendix F. Notably, a diesel price of 1.5€/l corresponds to approximately

45 daily booked seats per route. Furthermore, a 50 cents increase in fuel prices yields to three

additional daily booked seats per route. This comparison is relevant due to the substantial
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rise in fuel prices following the onset of the Russo-Ukrainian war at the end of 2021, as

illustrated in Figure 1.

Figure 2: Predicted number of daily booked seats per route across various diesel and gasoline
prices.

We further explore travelers’ responses to persistent changes in diesel prices following

the methodology proposed by Bento et al. (2013). We use the moving average of fuel prices

four weeks before the departure date to estimate Equation 5. The results reported in Table 5,

column (2), show a positive and significant effect. These findings confirm that a persis-

tent increase in fuel prices is relevant in the carpooling market. Moreover, it is expected to

observe a smaller effects when examining longer timeframes.

Finally, our main estimations are based on the assumption that travelers offering seats are

informed about fuel prices the day before the departure date. However, our analysis revealed

that, on average, travelers tend to offer seats six days before departure. Consequently, we

conducted a revised analysis, employing fuel prices lagged by six periods. The outcomes are

depicted in column (4) of Table 5. Notably, these results exhibit a significant but reduced

effect, thereby supporting our hypothesis and previous findings.

Heterogeneity analysis. A key question related to fuel price elasticities concerns hetero-

geneous behavioral responses due to a high concentration of seat offered among a reduced

number of users. As we document in Figure 3 from Appendix G, the distribution of offered

seats shows a long right tail. Additionally, our dataset reveals that roughly 42% of suppliers

offer less than five seats throughout the entire timeframe, with only 19% offering more than

twenty seats. Similarly, the distribution of requested seats mirrors this pattern, with 64% of
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Table 5: Fuel price elasticity to different timeframes

Dependent variable
ln(Q*) ln(Q*) ln(Q*) ln(Q*)

Variable (1) (2) (3) (4)

ln(Diesel price)t−1 0.506***
(0.111)

ln(Diesel price)4-weeks MA 0.285***
(0.0911)

ln(Diesel price)t 0.716**
(0.327)

ln(Diesel price)t−6 0.142**
(0.0654)

Observations 114,280 114,658 114,512 113,569
R-squared 0.769 0.769 0.769 0.769
Controls Yes Yes Yes Yes
Axis FE Yes Yes Yes Yes
Holidays Yes Yes Yes Yes
Day of the week FE Yes Yes Yes Yes
Monthly FE Yes Yes Yes Yes

Notes: The Table reports the results of interest after estimation of Equation 5,
column (6), for a 4 weeks moving average (4-weeks MA) of diesel prices. Con-
trols includes the covariates in Table 4: ln(Average seat price)t−1, toll fees cor-
rected by distance, train and bus frequency. Robust standard errors clustered at
the route level are shown in parentheses. Statistical significance: *** p<0.01,
** p<0.05, * p<0.1.

users requesting less than two seats. This observation suggests that more experienced users

may exhibit reduced sensitivity to fluctuations in journey costs.

To asses this hypothesis we estimated Equation 5 distinguishing between novice and ex-

perienced travelers based on their level of interaction with the platform. Specifically, we cre-

ate a binary variable identifying travelers with five or fewer interactions with the platform as

novices. In other words, novices are travelers who have offered or requested seats five times

or less. We then estimate the disparity in fuel price elasticity of supply and demand between

novice and experienced users by introducing and interaction term between this dummy and

the fuel price. The results, as shown in Table 6, indicate a difference in fuel price elasticity

for offered and requested seats of 0.28% and 0.19%, respectively. Remarkably, novice users
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Table 6: Fuel prices elasticities for novice and experienced travelers

(1) (2)
ln(supply) ln(demand)

ln(Diesel price)t−1 0.223*** 0.298***
(0.0718) (0.0964)

Novice -1.048*** -1.247***
(0.0371) (0.0415)

Novice× ln(Diesel price)t−1 0.282*** 0.192***
(0.0320) (0.0251)

Observations 212,014 206,786
R-squared 0.747 0.702
Controls Yes Yes
Axis FE Yes Yes
Holidays Yes Yes
Day of the week FE Yes Yes
Monthly FE Yes Yes

Notes: The table reports the estimation of Equation 5 with the
term Novice × ln(Diesel price)t−1. Novice is a binary variable
that takes the value of 1 for users with 5 or less interactions with
the platform. Controls includes the covariates in Table 4: toll
fees corrected by distance, train and bus frequency. Robust stan-
dard errors clustered at the route level are shown in parentheses.
Statistical significance: *** p<0.01, ** p<0.05, * p<0.1.

exhibit greater responsiveness compared to experienced users.

A complementary approach to the previous question involves identifying heterogenous

effects among different types of travelers based on their roles within the platform. travelers

who exclusively offer or request seats, and users who engage in both offering and requesting

seats. Table 7 presents the results of estimating fuel price elasticities for these traveler types.

In this context, the outcome of interests it the logarithm of the number of seats offered or

requested. The findings suggest that fluctuations in fuel prices lead to increased supply and

demand from both types of users, not solely from those with a singular role. Furthermore,

when combining the first type with our experience indicator, it becomes evident that novice

users who solely offer seats (column 3) demonstrate a higher response to fuel price variations.

In contrast, experienced users who exclusively requests seats (column 8) exhibit a larger

elasticity than novice users of the same type.
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4. Policy implications

The subsequent section delves into different economic policies and their influence on the oc-

cupancy rate. As previously highlighted, the occupancy rate embodies travelers’ preferences

towards alternative modes and serves as a pertinent indicator to the shifting mode effect and,

consequently, to the efficiency of carpooling in mitigating carbon emissions. In a similar

vein, comprehending the diverse mechanisms affecting the occupancy rate is pivotal for de-

vising appropriate policies in line with environmental goals. In this paper we focus on three

key factors: the implementation of a carbon tax, subsidies targeting new travelers, and the

transition of drivers to passengers.

4.1. Carbon tax

The widely accepted carbon tax is viewed as a viable solution for addressing environmental

concerns, particularly those pertaining to the transportation sector (Nordhaus, 2019). Specif-

ically, in the context of intercity car travel, the introduction of a carbon tax could motivate

travelers to adjust their behavior to decrease fuel consumption. Furthermore, our research

indicates a substantial association between fuel prices and the number of seats exchanged

in carpooling. Notably, larger fuel prices increases the supply and demand for seats, along

with an increased in the total volume of booked seats. higher fuel prices stimulate both the

supply and demand for seats, resulting in an overall increase in the volume of seats booked.

This raises questions regarding the impact of the carbon tax on the carpooling market, given

its tendency to elevate fuel costs

In France, the government implemented a carbon tax, known as theContribution Climat-

Energie, aimed at reshaping energy policies toward sustainability. This tax is a market-

based instrument that operates on the Pigouvian principle, where the polluter bears the cost.

Originally, the plan was to gradually increase the tax from 7€/tCO2 to 100€/tCO2 by 2030

to achieve emissions reduction targets. However, following the Yellow Vest Movement in

2018, the government opted to stop the increase, fixing the rate at 44.6€/tCO2, which is

translated into 11.2 and 11.9 centimes per liter of gasoline and diesel, respectively. While

this tax has broad political and redistributive implications (Chiroleu-Assouline, 2022), our
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focus here is its impact on the carpooling market.18

To assess the impact of the carbon tax on carpooling, we use the estimates derived from

Equation (5) to predict the volume of booked seats under the carbon tax in place (outlined in

column 1 of Table 8). Subsequently, we estimate the following two scenarios. Initially, we

construct a fuel price vector by deducting the annual carbon tax for both fuel types used in this

analysis. By comparing these outcomes with the primary findings, we can directly correlate

carpooling participation with the effect of the carbon tax on fuel prices. Second, we construct

an vector of prices including the carbon tax originally planned by the government for the

years after 2018. This approach enables us to estimate the potential number of confirmed

seats if the policy had been upheld. The results for both scenarios are reported in Table 8,

using the models in column (6) from tables Table 4 and Table 14.

Table 8: Daily booked seats by route under various scenarios of the French carbon tax

Fuel type Current policy Price excluding tax Tax policy envisaged

Value Diff Value Diff
(1) (2) (3) (4) (5)

Diesel 42.74 41.24 1.5 43.01 -0.27
(68.57) (66.25) (68.83)

Gasoline 42.75 41.55 1.2 42.95 -0.20
(68.56) (66.68) (68.72)

Notes: The table reports the predicted daily volume of booked seats by route un-
der three different scenarios of the French Carbon tax. Predicted values for diesel
and gasoline were obtained using column (6) of Table 4 and Table 14, respec-
tively. Column (1) shows the results for the tax policy in place. Columns (2) and
(3) present the predicted values deducting the carbon tax to fuel prices and the dif-
ference in seats with the tax policy in place. Columns (4) and (5) reports the pre-
dicted values including the carbon tax originally planned by the government and
the difference in seats with the tax policy in place. Standard errors are shown in
parentheses.

The findings suggest that the existing carbon tax leads to an average increase of nearly

1.5 additional seats per route on a daily basis. In essence, over the entire timeframe, this

translates to more than 260 thousand booked seats. Conversely, the failure to enforce the

original policy results in an average loss of 0.3 daily seats, almost 53 thousand seats between

2019 and 2022. Rather than focusing solely on numerical figures, it is crucial to underscore

the potential repercussions of delaying carbon pricing within a pivotal sector.

18See Appendix C for details on the envisioned rates from 2017 to 2022.
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4.2. Drivers switching to passengers

A promising strategy for carpooling to reduce carbon emissions is the transition of drivers

into passengers, a phenomenon we defined as the switchers effect. As illustrated in Table 1,

travelers offering seats often opt for more carbon-intensive alternative modes compared to

those requesting seats as passengers. Hence, policies aimed at balancing the driver-passenger

match, such as incentivizing drivers to become passengers, are crucial. Notably, in the

database we use here, this phenomenon is significant, with 43% of users offering seats also

request seats as passengers.

To assess the impact of switchers, we quantified the emission saved under two bench-

mark scenarios: filling empty seats with existing unmatched drivers on the platform and

filling those seats with new users. In the first scenario, the algorithm ranks drivers based

on the number of seats they offer. Those with the fewest offered seats are converted into

passengers first. After filling the seats of the highest-ranked drivers, the algorithm proceeds

to the next rank order. This process continues until all eligible drivers have been converted

into passengers.

On the contrary, in the second scenario, no driver switch, and all seats are filled by new

users. However, in this case, it is crucial to consider the alternative transport mode these

new users would have used instead of carpooling. We examine two alternatives: new users

shifting from private cars and new users shifting from trains. These options were chosen as

they represent extreme cases of carbon emissions, with the former being a more effective

means of reducing carbon emissions.

Table 9: Carbon emissions saved from switchers

Scenarios to fill empty seats Mean (gCO2) SD Min Max Count
Unmatched drivers 519,366 550,580 0 14,305,542 229,895
New users from cars 630,569 874,602 0 30,090,450 229,895
New users from trains 61,747 89,105 0 1,120,497 229,895

Notes: The Table reports the summary statistics of the carbon emissions saved in gCO2 by drivers
becoming passengers, or switchers. Estimations are aggregated at route-day level. Three scenarios
are considered: filling empty seats with existing unmatched drivers on the platform, filling empty
seats with new users shifting from private cars, and filling empty seats with new users shifting from
trains.

The results of the estimations are displayed in Table 9. This Table presents the summary

statistics of each scenario aggregated at the route-day level. To facilitate interpretation, we
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compare these emissions with the the average emissions of a new thermal car in 2019 which

is 112gCO2 per km according to ADEME. The findings suggest that filling empty seats

with unmatched drivers translates to saving 4.6 thousands km of car travel. Likewise, filling

vacant seats with new users from cars results in saving 5.6 thousand kilometers. Notably,

policies aimed at boosting the switchers effect, such as showcasing the option to book a

similar trip to users offering seats, could lead to significant reductions in carbon emissions.

Furthermore, it’s crucial to emphasize the importance of understanding the preferences for

alternative modes among new carpooling users.

4.3. Subsidies for new travelers

Another crucial implication from our findings pertains to the heterogeneous response pat-

terns between novice and experienced users. Similar to other digital platforms, carpooling

is heavily skewed, with a minority of users accounting for the bulk of offered seats, as it is

shown in Figure 3 in Appendix G. The finding presented here show that novice travelers are

more sensitive to the cost of car travel. In addition, attracting new users to fill empty seats

may result in significant reductions in carbon emissions. These findings resonate with a re-

cent subsidy scheme implemented by the French government under theCertificat d’économie

d’énergie designed to attract new users. New users completing, as drivers, three trips above

80km whithin three months receive a subsidy of €100.

This policy was introduced mainly to offset the continuous rise in fuel prices and to pro-

tect the purchasing power of households. Our findings support this policy choice, suggesting

that incentives targeting individuals who are more sensitive to such changes could effectively

prompt people to try carpooling and, eventually, make it their preferred mode of transporta-

tion. Also, our findings contribute to the design of policies with environmental objectives in

mind. According to our research, a subsidy program aimed at attracting new passengers or

promoting switchers aligns well with these environmental goals.
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5. Conclusion

Carpooling is considered as a promising innovation to reduce carbon emissions from roads,

a sector notorious for its significant emissions worldwide. However, robust empirical evi-

dence is crucial to confirm this hypothesis, as making car travel more appealing could could

potentially draw travelers away from cleaner modes of transportation, such as trains, limit-

ing the effectiveness of carpooling to mitigate carbon emissions. As shown in this paper,

this trade-off is embodied in the occupancy rate, measured as the number of passengers in

each trip. This is because the occupancy rate takes into account travelers’ preferences over

alternative modes of transport. Therefore, policies aimed at improving such indicator are in

line with environmental objectives.

In this regard, we delve into the impact of two mechanisms on the occupancy rate: vari-

ations in the cost of car travel and incentives for drivers to travel as passengers. Our findings

suggest that users consistently react to fluctuations in fuel prices. Moreover, novice users

showed a larger response in comparison with more experienced users. In addition, our re-

sults show that enhancing the switchers effect may entail a significant reduction in carbon

emissions.

The results discussed here have substantial implications for designing policies aimed at

promoting carpooling as en environmental policy objective. For instance, implementing car-

bon pricing mechanisms and offering targeted subsidies for new passengers could prove to

be effective strategies in boosting occupancy rates in carpooling and mitigating individual

carbon footprints. Moreover, our study opens new avenues for future research. In this pa-

per we focus on a short-term perspective without considering dynamics. Additionally, the

influence of fuel prices on the distribution of preferences among alternative transport modes

needs further investigation.
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Appendices

A. EEA Vehicle Emission Data Assessement

Our primary pollution indicator is derived from CO2 emissions per kilometer (g/km), ascer-

tained via the NEDC protocol. Although this protocol has faced criticism for its limitations,

it provides a valuable benchmark for assessing a particular combination of vehicle models

and brands. Since 2017, the European Commission has shifted towards the more realistic

WLTP protocol and is mostly left empty before. This shift presents a trade-off for our re-

search; while we aim for a comprehensive representation of car models spanning the period

from 2017 to 2022, the resultant emission data may not fully reflect real-world conditions.

Consequently, we interpret our results with caution, treating them as a lower boundary for

actual emissions.

Given that our carpooling database only contains the vehicle’s model name, as reported

by the driver, and lacks detailed specifications concerning the engine, we calculate pollution

indices by matching the reported model name to the weighted mean emissions for that model.

This approach factors in the total number of sales in France between 2011 and 2021.

For example, if ten new Peugeot 208 were sold, nine of which had combustion engines

that emit 200g/km and one with an electric motor that emits 0g/km, the aggregated emission

for Peugeot 208 in our database would be 180g/km. Note that there may be significant intra-

model variations across different years. Thus, we apply the weighted mean across our period

of study, incorporating these variations into our calculations.
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B. Carbon Mitigation Threshold Simulation

Table 10: Carbon Mitigation Passenger Number Threshold Under Different Scenarios of
Alternative Mode Shares

Scenario of alternatives Profile Weights of alternative modes without carpooling Passenger threshold
Car Train Bus Flight No Travel ADEME EEA

Current mode share, Passenger 0.16 0.69 0.02 0.01 0.12 1.7 1.5only high-speed rail Driver 0.66 0.24 0.01 0.01 0.08

Current mode share, Passenger 0.16 0.69 0.02 0.01 0.12 1.1 0.7only regional rail Driver 0.66 0.24 0.01 0.01 0.08

No flight, replaced Passenger 0.16 0.7 0.02 0 0.12 1.9 1.7by high-speed rail Driver 0.66 0.25 0.01 0 0.08

No flight nor bus, replaced Passenger 0.16 0.72 0 0 0.12 2.0 2.0by high-speed rail Driver 0.66 0.26 0 0 0.08

No flight nor bus, replaced Passenger 0.16 0.72 0 0 0.12 1.2 0.9by regional rail Driver 0.66 0.26 0 0 0.08

All the non-travels go to car Passenger 0.28 0.69 0.02 0.01 0 0.5 0.4+ only regional rail Driver 0.74 0.24 0.01 0.01 0

All the non-travels go to car Passenger 0.28 0.69 0.02 0.01 0 0.8 0.7+ only high-speed rail Driver 0.74 0.24 0.01 0.01 0

Current mode share, 25% cars are Passenger 0.16 0.69 0.02 0.01 0.12 1.6 1.3EVs + only high-speed rail Driver 0.66 0.24 0.01 0.01 0.08

Current mode share, 50% cars are Passenger 0.16 0.69 0.02 0.01 0.12 1.4 1EVs + only high-speed rail Driver 0.66 0.24 0.01 0.01 0.08

50% less car dependence, Passenger 0.08 0.77 0.02 0.01 0.12 5.9 4.9replaced by high-speed rail Driver 0.33 0.57 0.01 0.01 0.08

50% less car dependence, Passenger 0.08 0.77 0.02 0.01 0.12 2.9 1.8replaced by regional rail Driver 0.33 0.57 0.01 0.01 0.08

0 car dependence, Passenger 0 0.85 0.02 0.01 0.12 32.0 18.7replaced by high-speed rail Driver 0 0.9 0.01 0.01 0.08

0 car dependence, Passenger 0 0.85 0.02 0.01 0.12 6.5 3.5replaced by regional rail Driver 0 0.9 0.01 0.01 0.08

Notes: We calculate the carbon mitigation minimum number of passengers per ride threshold under different scenarios of weights of alternative
modes. Our baseline weights are those of the ADEME questionnaire. We assume that drivers and passengers are always under the same sce-
nario. Our scenarios are non-exhaustive but they allow us to observe the sensitivity of the threshold under heterogeneous user preferences. The
first and second scenarios would be reasonable for routes that are mainly/only served by one rail type, knowing that high-speed rails are less
polluting. The third to fifth scenarios would apply to routes without flights. The sixth and seventh scenarios allow all users to travel. Logically,
it will lower the threshold. We chose the cleanest alternative modes to lower the threshold the least. The eighth and ninth scenarios assume 25%
and 50% market shares of electric vehicles with zero pollution while driving, which de facto reduces the overall vehicle emission coefficient and
lowers the threshold. The last four scenarios are extreme cases where the polluting car alternatives are partially or completely replaced by clean
rail transport. In reality, these scenarios would be unlikely at the current stage, nor would promoting carpooling be logical under such scenarios.
However, we find it interesting to report the extreme cases.
We report thresholds of both the ADEME emission standards and the EEA emission standards. Intuitively, the EEA thresholds are always below
the ADEME threshold because EEA attributes a lower vehicle emission coefficient. Unless the car dependency would drastically reduce as an
alternative, especially for drivers, changing the weight of alternatives would not modify too much the scale of the threshold (the highest is 2).
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Table 11: Carbon Mitigation Passenger Number Threshold Under Ongoing Targets for Newly Regis-
tered Vehicles Emissions in the EU

Scenario of alternatives Profile Weights of alternative modes without carpooling Passenger threshold
Car Train Bus Flight No Travel

Current mode share, Passenger 0.16 0.69 0.02 0.01 0.12 0.82EEA goal of 93.6 g CO2/km [2025-2029] Driver 0.66 0.24 0.01 0.01 0.08

Current mode share, Passenger 0.16 0.69 0.02 0.01 0.12 0.42EEA goal of 49.5 g CO2/km [2030-2034] Driver 0.66 0.24 0.01 0.01 0.08

Notes: On 19 April 2023, the European Parliament and the Council adopted Regulation (EU) 2023/851 amending Regulation (EU) 2019/631 to
strengthen the CO2 emission performance standards for new passenger cars and new light commercial vehicles in line with the European Union’s
increased climate ambition (European Commission source [Accessed 10/11/2023]).Since 2021, the emission targets for manufacturers are based on the
WLTP (Worldwide harmonized Light vehicles Test Procedure).

C. CarbonTaxRate Envisioned by the FrenchGovernment

Table 12: Annual carbon tax rate envisioned by the French government in centimes per litre

Type of fuel 2017 2018 2019 2020 2021 2022
Gasoline 95 7.7 11.2 13.8 16.4 19.0 21.6
Gasoline 98 7.7 11.2 13.8 16.4 19.0 21.6
Diesel 8.1 11.9 14.7 17.5 20.2 23.0

D. Data Representativity

One key question regarding the external validity of our findings is how well our data sample

represents the French carpooling market. To answer this question, we requested BlaBlaCar

data on the aggregate number of seats supplied, requested, and booked by route by year for

the entire French market, together with the route distance, the population of the departure

city, and an indicator that shows whether the route is included in our sample. 19 These routes

are ranked by frequency, i.e. the total number of seats supplied (requested, or booked) on

the route i year t as a share of the total number of seats supplied (or booked) in the entire

French market that year. We then compute the cumulative frequencies from the most to the

least popular route. In this way, we are able to identify the top x routes that count for y%

of the French carpooling market. We compute the same indicators for our sample to draw

comparable statistics with the whole marketplace. For each year, we calculate the average

19Due to industry secrets, we cannot see the city names of the routes, only anonymized IDs.
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number of seats supplied, requested, booked, route distance, and departure city population,

taking into account all routes in our sample. We then compute the average of the yearly

averages, both for the entire market and for our sample.

Table 13 compares our sample (column 1) with the top routes that represent 75%, 85%,

and 95% of the entire French market (columns 2 to 4). We can see that in key market indi-

cators (supply, request, booking), our sample resembles the top 75% routes. Distance and

population comparisons are also satisfactory. It is not surprising to see a sharp decline in

market indicators for the last 25% market share, due to the long tail of all possible routes.

Although our sample is not representative of the entire French market, we are representative

of the most frequent routes that constitute 75% of the supply and demand.

Table 13: Data representativity of the French carpooling market

Sample Top Routes Constituting X% Cum. Freq.
Variable 75% 85% 95%

(1) (2) (3) (4)
Panel A. Supply
No. of seats 6 763.8 6 140.7 3 081.3 967.2

(35 715.8) (18 349.8) (12 515.7) (6 764.3)
Distance (km) 276.9 220.7 240.9 279.2

(141.6) (156.9) (167.4) (186.2)
Population (thousands) 112.0 122.4 106.2 85.8

(160.756) (293.456) (264.459) (235.499)
Panel B. Request
No. of seats 1 794.6 1 602.8 570.7 107.4

(11,370.6) (6,585.5) (3,757.3) (1,556.2)
Distance (km) 276.9 251.9 271.4 316.9

(141.6) (160.6) (171.5) (193.3)
Population (thousands) 112.0 163.5 125.3 80.2

(160.756) (356.616) (301.675) (226.915)
Panel C. Booking
No. of seats 1 216.1 1 035.6 323.2 55.0

(8,103.5) (4 596.3) (2 451.9) (963.9)
Distance (km) 276.9 254.8 278.1 326.8

(141.6) (161.7) (174.1) (197.1)
Population (thousands) 112.0 156.1 120.5 75.2

(160.756) (341.704) (292.083) (218.078)
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E. Carbon Mitigation Condition at Route Level

Individual rides may be very heterogeneous in terms of bookings. It is more interesting

to look at the carbon mitigation condition aggregated at the route-day level. The result is

parallel to the ride level:

Nprt

Nrt

≥ evrt − encd
encp

(6)

Where Nprt is the total number of passengers of route r on date t, Nrt is the total number of

rides offered on route r date t, and evrt is the average vehicle emission coefficient on route

r date t.

From Equation 6, we draw similar conclusions as in the individual case. In the short run,

the key indicator for carpooling to be carbon mitigation is for each route-day pair to attain

the minimum average number of passengers per ride (left-hand side). In the middle and

long run, we could work on the right-hand side of the equation. For example, to lower the

average vehicle emission coefficient of the entire fleet evrt, or to lower the rebound effect

of carpooling (to increase encd and encp), so that fewer participants who would have used

cleaner modes would have been attracted to carpooling.
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F. Results for Gasoline 95
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G. Distribution of seats offered

Figure 3: Distribution of the number of seats offered from 2017 to 2022.

H. Routes Included in the Database

Table 15: Inventory of itineraries

Origin Destination Distance (km) Toll fee in 2022 (€) Toll(€)/km
Lille Arras 52 0 0.00
Nancy Metz 55 0 0.00

Charleville-Mézières Reims 92 0 0.00
Brive-la-Gaillarde Limoges 96 0 0.00

Nantes Rennes 107 0 0.00
Limoges Châteauroux 122 0 0.00

Clermont-Ferrand Le Puy-en-Velay 129 0 0.00
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Table 15 – Continued
Origin Destination Distance (km) Toll fee in 2022 (€) Toll(€)/km
Caen Rennes 188 0 0.00

Clermont-Ferrand Rodez 246 0 0.00
Toulouse Albi 86 1.6 0.02
Vierzon Montauban 418 14.2 0.03

Clermont-Ferrand Béziers 344 11.7 0.03
Paris Beauvais 105 3.9 0.04
Paris Compiègne 90 3.6 0.04

Saint-Etienne Roanne 86 4 0.05
Grenoble Annecy 106 5 0.05
Paris Rouen 138 6.8 0.05

Toulouse Montauban 55 3 0.05
Paris Amiens 163 9.3 0.06
Paris Dunkerque 301 17.3 0.06

Toulouse Tarbes 154 9 0.06
Limoges Montauban 240 14.2 0.06
Paris Auxerre 169 10 0.06
Pau Tarbes 45.6 2.9 0.06

Nemours Nevers 167 10.8 0.06
Toulouse Pau 195 12.8 0.07
Marseille Avignon 103 7.2 0.07
Lille Compiègne 159 11.2 0.07

Toulouse Bayonne 296 21.8 0.07
Marseille Montélimar 168 12.4 0.07
Caen Rouen 127 9.5 0.07
Calais Arras 112 8.4 0.08

Marseille Orange 116 8.7 0.08
Lyon Mâcon 72 5.4 0.08
Paris Lille 230 17.3 0.08
Paris Arras 190 14.3 0.08
Lyon Valence 105 8 0.08
Dijon Mâcon 127 9.7 0.08

Clermont-Ferrand Brive-la-Gaillarde 180 13.9 0.08
Mulhouse Besançon 141 10.9 0.08
Paris Mâcon 397 30.7 0.08

Bayonne Pau 113 8.8 0.08
Paris Lyon 465 36.5 0.08

Bordeaux Agen 140 11.1 0.08
Nantes Niort 145 11.5 0.08
Reims Metz 191 15.2 0.08
Paris Reims 145 11.6 0.08
Lyon Marseille 315 25.4 0.08

Bordeaux Montauban 217 17.5 0.08
Bordeaux Toulouse 245 19.8 0.08
Paris Metz 332 26.9 0.08
Angers La Roche-sur-Yon 138 11.2 0.08
Le Mans Tours 102 8.4 0.08
Lyon Montélimar 150 12.4 0.08
Paris Orléans 131 10.9 0.08
Angers Tours 133 11.1 0.08
Paris Strasbourg 488 40.9 0.08
Reims Troyes 125 10.5 0.08
Reims Strasbourg 347 29.2 0.08
Angers Cholet 65 5.5 0.08
Marseille Valence 213 18.1 0.08
Metz Strasbourg 164 14 0.09

Toulouse Carcassonne 96 8.3 0.09
Bayonne Tarbes 148 12.8 0.09
Lyon Auxerre 302 26.4 0.09

Clermont-Ferrand Périgueux 245 21.9 0.09
Lyon Avignon 230 20.6 0.09
Lyon Orange 202 18.5 0.09

Le Mans Laval 87 8 0.09
Toulouse Agen 115 10.6 0.09
Toulouse Narbonne 154 14.3 0.09
Orléans Clermont-Ferrand 299 28.7 0.10
Lyon Clermont-Ferrand 167 16.3 0.10
Paris Bordeaux 584 57.2 0.10
Lyon Bordeaux 553 55.5 0.10
Paris Tours 237 24.1 0.10
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Table 15 – Continued
Origin Destination Distance (km) Toll fee in 2022 (€) Toll(€)/km
Angers Nantes 90 9.2 0.10
Paris Caen 241 25.4 0.11
Tours Poitiers 105 11.3 0.11

Grenoble Lyon 112 12.2 0.11
Caen Le Mans 163 17.8 0.11
Paris Poitiers 339 37.2 0.11

Orléans Poitiers 218 24.3 0.11
Valence Grenoble 93 10.4 0.11
Tours Orléans 116 13 0.11
Lyon Chambéry 108 12.2 0.11

Marseille Toulon 65 7.6 0.12
Paris Calais 197 23.4 0.12
Troyes Orléans 216 29.2 0.14
Rouen Tours 309 42.1 0.14
Pau Bordeaux 216 29.6 0.14

Rouen Le Mans 212 32.6 0.15
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 Conclusion 

This doctoral research analyses the rise of digital mobility platforms in the context of 

profound structural transformations prompted by the digital revolution and the ecological 

transition. These technological innovations bring both opportunities and challenges. This 

thesis underscores the importance of understanding the disruptive forces behind such 

innovations to effectively unlock their benefits and mitigate potential negative impacts. The 

primary contribution of this research lies in its comprehensive analysis of the integration of 

digital mobility platforms in multi-modal transport systems. Through empirical studies 

presented in Chapters 3 to 5, this research offers valuable insights into the interaction 

between different relevant actors including authorities, public transport, and digital mobility 

providers. In addition, the thesis delves into the regulatory implications needed to direct 

innovations towards a more efficient and clean transport system. 

 The insights gained from this research have several important policy implications. As 

cities continue to grow, innovations continue to disrupt the industry, and the climate change 

continue to urge the ecological transition, better policy interventions will be essential to 

maximize the benefits of digital mobility platforms while minimizing potential adverse 

effects. Key policy recommendations include the following: 

• Promoting Multimodal Integration: One of the primary goals to reduce car-

dependencies is to promote multimodal behavior. This involves fostering 

complementarities between public transport and digital mobility platforms to 

enhance accessibility ant tackle the first/last-mile dilemma. Policymakers should 

focus on developing integrated mobility platforms that allow users to plan, book, 

and pay for trips involving multiple modes through a single application. 

Additionally, better urban design requires investment in infrastructure that enhances 

the physical integration of multiple modes. 

• Designing Effective Regulatory Frameworks: Effective regulation is critical to 

manage the integration of digital mobility platforms into existing transport systems. 

This includes setting clear rules for the operation of shared mobility services, 

implementing policies to encourage the use of environmentally friendly modes of 

transport, implementing flexible rules to adapt to technological advancements and 

evolving user behaviors, and investing in infrastructure to promote multimodality. 

Additionally, policies that discourage the use of private cars, such as congestion 
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pricing and parking restrictions, can help shift travel behaviors towards more 

sustainable options. 

• Enhancing Public Awareness and Acceptance: Public acceptance of new mobility 

services is crucial for their success. Policymakers should invest in public awareness 

highlighting the benefits of multimodality and addressing any concerns related to 

safety, accessibility, and environmental impact. Engaging with communities and 

stakeholders in the planning and implementation process can also help build trust 

and support for new initiatives. 

 Despite the promising potential of new mobility services, several challenges remain that 

require further research. Digital mobility platforms can disrupt existing spatial and temporal 

patterns of transport usage. First, future research should explore better strategies to distribute 

these services more evenly across urban areas and ensure complementarities with the current 

urban layout and public transport. Second, the introduction of emerging services can have 

unintended consequences, such as increased congestion or higher carbon emissions when 

they displace cleaner modes. More research is needed to develop robust methodologies for 

assessing the environmental and social impacts of these services. Third, ensuring equity and 

accessibility is a critical consideration in the design and implementation of transport 

policies. Future mobility systems should be accessible to all segments of the population, 

including those currently in underserved areas. This question remains considerable 

understudied and more robust empirical evidence is needed to understand whether these 

services exacerbate existing inequalities. Finally, regulatory authorities must keep pace with 

the rapid technological advancements and be able to adapt regulations accordingly. 

Research in this direction should consider this challenges to propose better regulatory 

governance. 

 As we stand at a pivotal moment in human history, the choices we make today will lay 

the foundations for our future cities. The ecological transition and the digital revolution 

holds the promise of enhancing social welfare for a better urban life. However, this vision 

requires a coordinated effort from policymakers, practitioners, and researchers. The 

integration of digital mobility platforms into transport systems presents a unique opportunity 

to address longstanding challenges and to create a more sustainable and equitable future. By 

leveraging the insights gained from this research, authorities can make informed decisions 

that promote the effective integration of these services, ultimately leading to mobility 

systems that prioritize people’s quality of life. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 
Over the past century, private cars have dominated the transport industry, profoundly shaping economic 

activity. However, this car-centric approach has also come with substantial costs, due to increasing traffic 

congestion and carbon emissions. In response, cities have increasingly adopted digital mobility platforms to 

improve transportation efficiency and enhance quality of life. Leveraging the principles of the sharing 

economy, digital mobility platforms provide short-term access to various means of transport. This model is 

appealing because it promotes more efficient use of capital and offers cleaner alternatives to individual car-

usage. To effectively address transport-related concerns, they must reduce car dependency, address 

travelers' dilemmas, and fostering complementarities with mass transit. However, the lack of robust empirical 

evidence limits our understanding of whether digital mobility platforms adhere to these principles. Therefore, 

the question of how to effectively integrate digital mobility platforms into existing transport systems remains 

an ongoing subject of scrutiny. This thesis contribute to this debate in four papers. Chapter 2 builds on the 

theory of platform economics to develop a business model typology for digital mobility platforms and identify 

the nature for public intervention. Chapter 3 explores the market dynamics between public transport and bike-

sharing, revealing complementarities after long periods of disruption in the network. Chapter 4 evaluates 

parking regulations for e-scooters. The findings suggest a positive effect on improper parking, but an 

unexpected negative effect on accessibility. Chapter 5 investigates carpooling's potential for carbon emission 

reduction, and explore policies to improve carbon mitigation. Overall, this thesis provides insights for decision-

makers and practitioners to design more efficient and sustainable multi-modal transport systems. Crafting 

regulations that guide technology toward economic and environmental objectives is paramount for the future. 
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RÉSUMÉ 

 
Au cours du siècle dernier, les voitures privées ont dominé l'industrie du transport, exerçant une influence 
profonde sur l'activité économique. Ce paradigme centré sur la voiture a entraîné des coûts substantiels, en 
raison de l'augmentation de la congestion routière et des émissions de carbone. En réponse, les villes ont 
de plus en plus adopté des plateformes de mobilité numérique pour améliorer l'efficacité des transports et la 
qualité de vie. S'appuyant sur les principes de l'économie de partage, les plateformes de mobilité numérique 
offrent un accès à court terme à divers moyens de transport. Ce modèle est attrayant car il favorise une 
utilisation plus efficace du capital et offre des alternatives plus propres à l'utilisation individuelle de la voiture. 
Pour répondre efficacement aux enjeux liées au transport, elles doivent réduire la dépendance à l'égard de 
la voiture, résoudre les dilemmes des voyageurs et favoriser les complémentarités avec les transports en 
commun. Toutefois, l'absence de preuves empiriques solides nous empêche de comprendre si les 
plateformes de mobilité numérique adhèrent à ces principes. Par conséquent, la question de savoir comment 
intégrer efficacement les plateformes de mobilité numérique dans les systèmes de transport existants reste 
un sujet d'étude actuel et pertinent. Cette thèse contribue à ce débat par le biais de quatre articles. Le chapitre 
2 s'appuie sur la théorie de l'économie des plateformes pour développer une typologie de modèle d'entreprise 
pour les plateformes de mobilité numérique et identifier la nature de l'intervention publique. Le chapitre 3 
explore la dynamique du marché entre les transports publics et le vélopartage, révélant des 
complémentarités après de longues périodes de perturbation du réseau. Le chapitre 4 évalue les règles de 
stationnement pour les e-scooters. Les résultats suggèrent un effet positif sur le stationnement abusif, mais 
un effet négatif inattendu sur l'accessibilité. Le chapitre 5 étudie le potentiel de réduction des émissions de 
carbone du covoiturage et explore les politiques visant à améliorer la réduction des émissions de carbone. 
Dans l'ensemble, cette thèse fournit des indications aux décideurs et aux praticiens pour concevoir des 
systèmes de transport multimodaux plus efficaces et plus durables. Il est primordial pour l'avenir d'élaborer 
des réglementations qui orientent la technologie vers des objectifs économiques et environnementaux. 
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